| Login

Resource Library

Keyword
GO
Categories










Industries














271 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetics
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Design Exploration and Optimization of an Aluminum Profile
Faraone Srl - a company leader in designing and manufacturing "transparent architectures" - as been working with Altair to develop an optimization and design exploration workflow for their aluminum profiles. Profiles initially designed with Altair Inspire, are then passed to the new Design Explorer tool - included in Altair HyperWorks X - to further evaluate and refine the design.

Transformative Flight Transportation: Challenges Become Opportunities
Advances in energy storage, motor efficiency, and flight control systems have us on the potential cusp of a revolution in air mobility. This comes at a time when many traditional transportation infrastructures are saturated and new modes of mobility are desperately needed. The presentation will provide an overview of recent developments in urban- and extended-air-mobility and discuss the hurdles that must be overcome, not only technical obstacles but also challenges in regulations, societal acceptance, and business. It will provide context with an overview of our own technical challenges and successes, from the imminent Transition® to the aspirational TF-X.


Meet your Energy Efficiency Goals in your Electrification Projects with Simulation
Electrification is one of the main means of creating a low-carbon economy, allowing to use renewable energies and energy efficient technologies. Electric power enters many industries and also impacts our everyday lives, especially with the electric mobility. The use of power electronics and control systems allows offering better reliability, safety and low maintenance costs, and also brings additional innovative functions. Learn how Altair simulation and optimization tools can help designing highly efficient electric machines, as well as advanced control strategies to help you build innovative and energy efficient electric solutions.

Product Development with a Multi-attribute, Single Model Workflow
This presentation discusses an efficient work-flow for multiple attribute analysis and optimization using Altair HyperWorks CAE tools with the HyperMesh pre-processor and OptiStruct solver. A single finite element model has been built with all the three subcases, i.e. NVH, nonlinear strength (permanent set) and fatigue, in the same model as different load-cases. This makes analysis and iteration processes streamlined and efficient, as no model conversion is involved. Further optimization with the required set of responses and constraints are discussed in order to achieve at light weight design with performance target for dynamic stiffness, permanent set and fatigue damage.

Expert Emulation in Crash Optimization using Machine Learning
In optimization it is sometimes desirable, but not possible to define constraints that fully reflects an expert’s requirements. This may lead to a design that does not function as intended. Machine Learning enables the user to set up subjective constraints, ensuring a design that has been trained to replicate the expert’s opinion. In this presentation machine learning is used to ensure axial crush for an automotive front crash event.

Empowering Aerodynamic Design Exploration – Volkswagen Group Research Case Study
This presentation highlights Volkswagen Group Research’s novel approach to early-stage aerodynamic performance improvement using a combination of Altair’s simulation technology and VW’s proprietary reduced-order modeling technology. The unique technologies and approach have enabled early-stage design exploration and unprecedented collaboration between stylists and aerodynamicists with the goal of delivering both styling emotion and aerodynamic performance.

Machine Learning in 3D: Teaching Algorithms to Organize, Judge and Generate Parts
This talk presents the challenges of using 3D geometry in machine learning and demonstrates new techniques that Altair is using to teach algorithms about our 3D world.

The Key Role of Simulation in Development of Aluminum Profiles and Study of Glass Structures in Shorter Design Time
This presentation discusses advancements of the range and quality of products in the last few years at Faraone, thanks to the adoption of both Altair Inspire and SimSolid. SimSolid is a great tool that allows Faraone to study and refine the design of complex structures and a variety of different products, not just glass balustrades. In less than half an hour, it makes it possible to analyze and verify a three-story glass staircase, directly from the 3D CAD file, a simulation that would normally requires about half a day. Additionally, Moreover the original CAD drawing does not need simplification, SimSolid® works directly from the 3D CAD file, allowing fewer issues, and a better, final solution.

Altair ConnectMe™ 2019
Altair ConnectMe™ 2019 is a very easy to use tool to launch Altair Products, receive update notifications and hear about the latest Altair news. With the 2019 version it now also manages Altair Partner Alliance products and products licensed by solidThinking Units. Highlights are the access to different versions of the same product and a direct access to the product help without the need to launch the product itself.

Radioss 2019/2019.1 Overview
Watch this video to see the new features available in the Radioss 2019 and 2019.1 releases.

Maximize Productivity in SimSolid
Getting started with SimSolid? View this video to see how you can get started and maximize your productivity with the tool.

Solid Modeling of a Mechanical Part
A short workflow illustrating the power of solid modeling and editing in Inspire Studio, applied to a junction pipe with flanges.

Create and Control NURBS Curves & Surfaces
Utilize Non-uniform Rational B-Splines (NURBS) curves and surfaces to accurately represent even the most complex shapes with flexibility and precision.

e-Motor Concept Quick Design with Altair FluxMotor
Altair FluxMotor is a straightforward platform dedicated to the pre-design of electric rotating machines. It enables the designer to build a machine from standard or customized parts, add windings and materials to quickly run a selection of tests and easily compare the machine performance. In addition, they can predict the machine performance at one or more working points, and also for complete duty cycles. By coupling FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage. They can select and focus on the topologies that fulfill the main specifications before going further in their EM design with Altair Flux and perform Multiphysics analysis.


Automated Tests and Reports with Altair FluxMotor
Altair FluxMotor is a straightforward platform dedicated to the pre-design of electric rotating machines. It enables the designer to build a machine from standard or customized parts, add windings and materials to quickly run a selection of tests and easily compare the machine performance. In addition, they can predict the machine performance at one or more working points, and also for complete duty cycles. By coupling FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage. They can select and focus on the topologies that fulfill the main specifications before going further in their EM design with Altair Flux and perform Multiphysics analysis.


  •  
Discover Altair FluxMotor: Easy-to-Use Software Dedicated to e-Motor Concept Design
Altair FluxMotor is a straightforward platform dedicated to the pre-design of electric rotating machines. It enables the designer to build a machine from standard or customized parts, add windings and materials to quickly run a selection of tests and easily compare the machine performance. In addition, they can predict the machine performance at one or more working points, and also for complete duty cycles. By coupling FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage. They can select and focus on the topologies that fulfill the main specifications before going further in their EM design with Altair Flux and perform Multiphysics analysis.


  •  
e-Motor Concept Optimization Coupling with Altair FluxMotor and Altair HyperStudy
By coupling Altair FluxMotor for e-Motor concept design with Altair HyperStudy, more design exploration and optimization can be accomplished, while considering duty cycles.
Further information are available on Altair connect.


  •  
Use Freehand Sketches to Design a Chair with Inspire Studio
This Inspire Studio workflow video shows how freehand sketches can be easily imported in the software and used as the starting point to design a chair.

  •  
Constraint-based Technical Sketching in Inspire Studio
This Inspire Studio workflow video shows how 2D technical sketches can be leveraged to design parametric parts in a chair design.

  •  
Use PolyNURBS for Rapid Styling of a Vehicle
This Inspire Studio workflow video shows how PolyNURBS technology can be used to easily and rapidly generate the initial body style of a vehicle.

  •  
Construction History in Inspire Studio
This Inspire Studio Workflow video illustrates an example of how construction history can be leveraged to quickly apply modifications to an existent model, like changing the number of spokes in a bike wheel without rebuilding the model.

  •  
10 Things You Didn't Know You Could Do In Altair OptiStruct
You know Altair OptiStruct as the leader in topology optimization, but did you know that the use of OptiStruct for nonlinear structural analysis has been increasing rapidly at leading companies? Teams are benefiting from a modern solver technology with linear and nonlinear capabilities – backed by Altair’s industry leading support – while reducing costs through the unique value of HyperWorks Units.

Advanced Hystheresis Simulation Using Preisach Model - Altair Flux
Newly introduced in Altair Flux, the hysteresis modeling based on Preisach's model enables a better evaluation of iron losses and remanence effects. Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.


Taking Demagnetization Into Account - Altair Flux
Demagnetization simulation: considering the magnet demagnetization phenomena during the solving process simulation enables very accurate predict the device performance, and measure the impact on EMF and torque for instance. Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

Advanced e-Motor Design Dedicated Environment - Altair Flux FeMT
Designing an e-Motor has never been a simple task. Altair Flux, the solution for accurate electromagnetic detailed design, not only enables to quickly generate 2D and 3D motor models with its Overlays. Its new module now produces efficiency maps and automatic reports in the same appreciated FluxMotor supportive environment. Flux captures the complexity of electric motors and electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

New Features of Altair Flux Electromagnetic and Thermal Simulations
Altair Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

e-Motor Concept Optimization Coupling with Altair FluxMotor and Altair HyperStudy
Designers starting with a blank page face an unlimited number of configurations and need to quickly select machines types. By coupling Altair FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage, defining their constraints and their objectives. A typical objective is to reach maximum global efficiency across a given duty cycle. Then, designers can select and focus on the topologies that fulfill the main specifications before going further in their design.

Model Export to Altair Flux
Once a designers has defined its motor concept in Altair FluxMotor and evaluated its global performance, he can perform more detailed analysis, exporting his machine in Altair Flux and working with high-fidelity models. Significantly, Flux enables more accurate prediction of motor behavior, with advanced losses computation, considering eccentricities, magnet demagnetization, effects of manufacturing process, and couple to Altair HyperWorks for multiphysics analysis.

e-Motors Comparison and Ranking with Altair FluxMotor
Quickly design and optimize concept machines while offering efficient comparison capabilities, Altair FluxMotor enables designers to make informed early strategic choices to select the most appropriate topologies.

SimSolid Drives Down Analysis Time at Don-Bur
Truck trailer manufacturer, Don-Bur, discuss the challenges its engineering team was having with simulation in SolidWorks, and how a move to SimSolid has cut its simulation time from hours to a just few minutes.

Improving Performance Using FEKO and HyperStudy at Northrop Grumman
Scott Burnside, Senior Antenna & RF Engineer at Northrop Grumman, explains how Altair Feko and HyperStudy can be combined to design and optimize antennas for land vehicles, helicopters, and aircrafts.

Digital Power - Model Based Frequency Response Analysis
Details of the new block of the Digital Power Designer which lets user do a frequency response analysis.


Midsurfacing and Meshing in HyperWorks X
A beam example of how the new Altair HyperWorks X workflows allow to quickly extract midsurfaces, generate a mesh and apply morphing.

Hyperworks X: Morphing Examples on a Turbine Blade
This brief demo shows the easy accessibility to morphing in HyperWorks X. Different examples are shown to explain, how to take advantage of Altair's morphing technology.

Hyperworks X: Design Space Management
Altair HyperWorks X introduces a very intuitive and powerful workflow to quickly generate design and non-design space for optimization runs. It also provides a library for automotive related non-design spaces, such as engine, seats, engine, sunroofs, and wheel arches. The results can be quickly altered with manipulators.

Geometry Generation and Morphing in HyperWorks X
Based on the example of a floor panel, this video shows how easy it is to generate new geometries and meshes in HyperWorks X. Some adjustments to the mesh are done with the morphing functionality. These mesh geometry changes are saved as shape, e.g. to use it for a subsequent optimization.

Evaluate the Largest Assemblies in Minutes with SimSolid
Moving stage for the Qintai Culture & Art Center in Wuhan, China.
The CAD assembly used for the analysis consisted of 7738 parts, including hundreds of bolts and welds. It required approx. one hour to import and setup the model, 30 minutes to solve the analysis on a regular laptop. SimSolid model created by: INNEO.

Image source: SBS Bühnentechnik GmbH

Dynamic Motion in Altair Inspire
Altair Inspire includes a powerful and intuitive environment for investigating system motions of moving parts

Fit PolyNURBS in Altair Inspire
The new Fit PolyNURBS feature allows you to automatically wrap optimization results with PolyNURBS. This option can be found on the optimization Shape Explorer.

Spot Welds in Altair Inspire
With Altair Inspire you can easily create spot welds for sheet metal parts design

Altair Inspire Load Case Tables
Easily organize and manage all boundary conditions with load case tables

Friction in Joints in Altair Inspire
Friction can now be considered in setting up dynamic motions

Suppress/Unsuppress Entities in Altair Inspire
Joints, fasteners, and motion entities (for example, springs or motion contacts) can now be suppressed. This feature is useful for studying the effects of a given entity on system behavior or when debugging a model

Altair Inspire Overhang Shape Controls
Optimal lightweight designs can be defined in Altair Inspire taking in account several constraints for additive and traditional manufacturing processes, including the overhang angle for 3D printed parts.

Altair MotionSolve New Feature Overview
View a high level overview of the new features available within MotionSolve 2019.


Durability & Comfort Simulations with MotionSolve
Our goal was to help engineers developing ground vehicles to determine fatigue life of components and improve driver comfort. Vehicle-specific simulation events have been added or streamlined to closely mimic standard physical tests performed in a lab (such as with N-post shakers) or on a test track.


MotionSolve Examples Library
The MotionSolve examples library has been added to provide users with resources to learn MotionSolve on real world type models.


General Machinery Solutions with MotionSolve
Our goal was to help users more easily build and simulate complex systems. To this end, we have added a library of higher-level modeling elements including cables, pulleys, and winches; linear actuators, struts, & rods; as well as gears and cams – obviating the need for users to separately define parts, markers, and joints for these elements.


Generic Modeling Improvements with MotionSolve
Many other enhancements in this release were designed to enable users to assemble and solve models to evaluate product behavior much faster, especially for vehicle simulations.


System Design Solutions with MotionSolve
Much of the MotionSolve and MotionView multi-body modeling and simulation technology has been incorporated into Inspire Motion to enable system design closely tied to 3D CAD geometry.


Altair HyperStudy New Feature Overview
View a high level overview of the new features available within HyperMesh 2019.


Altair HyperStudy Bubbles Plot
Bubble plots can be used to view additional information in a scatter plot window.


Altair HyperStudy FAST Fit Method and Lookup Model Type
FAST automatically builds the best fitting functions. To accomplish this, HyperStudy is automatically testing all the methods available and their settings to figure out the most appropriate method to obtain the best quality fit for each approximated function.


Altair HyperStudy Model Linking
Workflow and user interface changes have been made to the Model Resources dialog to streamline the experience by providing a clearer visual representation of the run’s directory structure.  This will make setup and review more intuitive.


Altair HyperStudy System Reliability Optimization (SRO) Method
System Reliability Optimization (SRO) is a new, highly efficient reliability based design optimization (RBDO) method.  This new method requires a reduced number of runs, and allows reliability constraints to be applied to not just the individual failure constraints but to the overall system reliability.


Altair HyperLife New Feature Overview
HyperLife is a new Fatigue application that is being released with version 2019. See an overview of this new product and the features it contains.


Altair HyperLife Execute the Fatigue Setup
The Evaluate tool allows you to run the Fatigue Analysis, and subsequently load your results in the Results Explorer to visualize the Damage and Number of Cycles to Failure contour.


Altair HyperLife Creating Fatigue Events
The Load Map tool serves as a typical Signal processing utility where you can import repetitive load history files. You can also create a simple constant amplitude or block loading cycles with a single click.


Altair HyperLife Fatigue Modules Selection
A collated icon enables you to choose the type of fatigue analysis to be run.


Altair HyperLife Material Assignment
The Material tool allows you to create, store, and manage the Fatigue material property assigned to parts. This tool is preloaded with a library of Fatigue material properties, from which you can choose from. You can also load materials from your own database or create new materials in the session.


Altair HyperLife Stress Life Analysis
Uniaxial and Multiaxial assessment options with multiple Mean stress correction theories. Various stress combination methods are available for Uniaxial assessment. Critical plane implementation for Multiaxial assessment.


Altair HyperLife Seam Weld Fatigue Analysis
Structural stress method implementation for Seam welds idealized with plate or shell elements. The approach is based on VOLVO method. Supported weld type is FILLET weld and the weld lines (root and toe) are automatically identified.


Rapid Diagram-to-Code
In under 60 seconds, blink an LED connected to an Arduino by rapidly and easily generating code from a block diagram


Altair Embed Connecting to Controller Hardware (Arduino, etc.)
How to generate code from a block diagram and move it onto target microcontroller (MCU) hardware such as an Arduino


Altair Embed Construct State Diagrams
Push-button control of an Arduino using a state chart and code generation


Altair Embed Drone DC Motor Control HIL
Hardware in the loop (HIL) testing of a speed controller for a motor used on a drone propeller


Altair Embed PMSM Sensorless Field Oriented Control HIL
Set parameters to optimize controller performance for permanent magnet synchronous motor (PMSM) without an encoder


Altair HyperMesh New Feature Overview
View a high level overview of the new features available within HyperMesh 2019.


Altair HyperMesh Batchmesher Enhancements
Many improvements have been made to batchmesher in the version 2019 release. Learn more about the new enhancements available in this release.


Altair HyperMesh CAD Interfaces and New Capabilities
Many improvements have been made to the CAD interface in the version 2019 release. Learn more about the new enhancements available in this release.


Altair HyperMesh Crash & Safety - Dummy Pre-Simulation
Dummy pre-simulation with the cable method can be performed using the Dummy Pre-Simulation tool.


Altair HyperMesh Crash & Safety - Mechanism Tool
Automatically extract bodies and joints to create a mechanism of the selected Finite Element model using the Mechanism Extraction tool.


Altair Activate 1D Block Diagram Modeling
Model and simulate systems using one-dimensional (1D) block diagrams


Altair Activate Physical Modeling via Modelica
Construct models using a physical modeling approach with Modelica


Altair Activate Combining 1D Signal and Physical Blocks
Example of simulating a system-of-systems by combining signal-based modeling with physical modeling


Altair Activate Open System Integration via FMI
Leverage the Functional Mock-up Interface to help couple together 3D models with 1D models


Altair Activate 1D/3D Example: Active Suspension
Example of using both 1D models + 3D models together to simulate an Active Suspension system


Altair Activate 0D & 1D Modeling
Example of using either 1D modeling or 0D modeling to simulate a basic electrical circuit system


Altair Compose System Dynamics
Assess and improve system dynamics with Altair Compose by constructing and solving differential equations, then understand design sensitivities by rapidly changing model parameters


Altair Compose: Read CAE Data Natively
Leverage data-reader functions built into Altair Compose to make it easy to import and post-process CAE and test data, using any of numerous standard data file formats


Altair Compose: Coupling with Python
Use Altair Compose with Python to create, execute, and debug scripts and to visualize results. Combine with scripts written in OML to get the best of both worlds.


Altair Compose: HyperWorks Automation Tool
Calculate margins of safety of fasteners with less segregate tools integrating result, model and math through the HyperWorks bridge to maximize productivity


Altair Compose Digital Data Compression
Use handy digital signal processing functions to easily compress the data with minimal loss of quality, producing smaller data packets which require less time to transmit from space to ground


Altair Compose Custom Library Creation
Create and import custom Compose libraries using C/C++ functions to achieve better reliability of processes and efficiency of calculation


Altair Compose Flutter Data Analysis
Automatically parse and manipulate CAE text output files to avoid manual work with a more appropriate environment for math operations


Altair Compose Fatigue Damage Evaluation
Evaluate Fatigue damage and life based on the load history applying handy Fatigue methods under high cycle or low cycle


Altair Compose Auto-Generating Input for FEKO
Automate the generation of antenna array excitations seamlessly performing the necessary calculations, data formatting, and output


Altair Compose CAE Test Data
Import various types of CAE or test data for visualization and/or manipulation in Altair Compose

Altair Compose Curve Fitting
Fit an optimized curve through imported test data with Altair Compose

Altair Compose Simulating a Solar Eclipse
Flexibly model astronomic events like eclipses and planetary transits performing necessary calculations with many easy-to-use Math functions to accurately predict and visualize the path of eclipse shadows


Taking on the Shell XPRIZE with Help from a Digital Twin
Chris Wilkinson, CTO at SMD speaks at the UK Altair Technology Conference 2019. An XPRIZE challenge is designed to source new approaches to solve difficult problems thereby disrupting existing markets or creating new ones. Our oceans cover over 70% of the planet with only 5% explored. The ocean environment is hostile and technically challenging to operate within. The Ocean Discovery XPRIZE competition was established to seek cheaper and faster solutions to survey the world’s oceans. This presentation is about one of the teams that entered the competition with a disruptive solution for ocean survey. The emerging role and importance of a digital twin is explored to support the solution as it scales from proof of concept to one that is fully industrialised.

Solving Problems in Product Design in Aerospace
Robert Fox, Engineering Associate Fellow at Rolls-Royce presents at the UK Altair Technology Conference 2019.

This presentation provides some background on Rolls-Royce products and how CAE has changed the way in which such complex products are certified as being safe to fly. The presentation then moves on to outline some ways in which CAE is now being employed earlier in the design process to develop the next generation of aircraft engines. It concludes with some background on how Rolls-Royce engages with students and Universities engaging in CAE projects.

Delivering Product Innovation Through Simulation
Dr Gero Kempf, Chief Engineer - Body Strategy at Jaguar Land Rover presents at the UK Altair Technology Conference 2019. Dr Kempf is a graduate from Technical University Munich (TUM) and holds both an Engineering Doctorate in Computer Science, from the faculty of electrical engineering, and a Dipl. Phys. in Technical Physics including electrical and mechanical engineering.

Gero had a number of positions in various functional areas at BMW taking him to be Vice President Lightweight Innovation in 2014. In 2015, Gero joined Jaguar Land Rover. As well as his role in Body Engineering Strategy, Gero is involved in a number of research fields at JLR in the area of future mobility. In 2016 he was made an Industrial Professor to the Warwick Manufacturing Group of Warwick University. In addition to his commitments to Jaguar Land Rover, he also supports the development of expertise in battery production and testing, lightweight body construction in aluminium and composites, and highly automated driving.

The Multiphysics Optimization Platform for e-Motor Innovation
Altair develops multiphysics simulation technologies that allow you to accelerate next generation mobility solutions development. From smart control design to powertrain electrification and vehicle architecture studies, our solutions enable optimization throughout the development cycle, all backed up by a global team of engineering consultants.



Using Advanced Simulation to Design Leading Motorcycles
Rod Giles, Group Manager CAE & CAD presents at the UK ATC 2019. Royal Enfield has and is undergoing a massive transformation, not only in the sales and manufacturing departments, but also in the way the motorcycles are designed and developed. Leading the way in the development of all new motorcycle platforms is the use of advanced Computer Aided Engineering (CAE) tools. At Royal Enfield we use a wide array of different tools and techniques. The primary tool for model preparation and analysis is Altair Hyperworks. Rather than trying to cover the vast range of analyses carried out, today I will concentrate on some examples where advanced techniques have helped the design process including using smooth particle hydrodynamics (SPH) in explicit analysis to evaluate fuel tank integrity, using NVH director to evaluate and improve transfer path analysis (TPA) to aid the rider comfort, using topology optimisation to reduce mass and improve structural performance of engine and chassis components, and using MotionSolve to understand complex mechanism dynamics.


Empowering Designers with Predictive Simulation Technology
Jon Heath, Lead Mechanical Engineer at Brompton Bicycle presents at the UK ATC 2019. The Brompton bicycle has been engineered over many years using very much traditional engineering development methods. Introducing FEA tools and methods into the development process has allowed Brompton to reduce development time and improve early stage design robustness.



This presentation details how the company has implemented the Altair Inspire, SimSolid and HyperWorks suites into its development process, enabling its design team to find problems quickly and correct them before prototyping.

A New & Revolutionary Way to Collect Energy from Wind
David Yáñez presents at the UK ATC 2019. Vortex Bladeless is a Spanish start-up that is developing a new wind energy technology. Its key characteristic is the minimization of mechanical elements that can be worn by friction. In the first stage, its application area seems to be distributed energy. For its development, CFD tools are being of vital importance. Both the fluid-structure interaction and the behavior of the magnetic fields in the alternator are being studied mainly with this type of tool. The results obtained are being contrasted with experimental results obtained both in wind tunnel and in real application environments.

A general vision of the technology, the strategies used for the integration of the different physical phenomena involved and the path traveled for its development will be exposed.

Additive Manufacturing, Lattice Structures and Advanced Simulation: the Good, the Bad & the Ugly
Simon Jones, Technical Director at HiETA presents at the UK ATC 2019. Additive Manufacturing (AM) offers huge potential to create structures and designs that are not realisable through conventional manufacturing methods, and deliver real engineering benefit. HiETA will talk about our experience of developing complex thermal management structures using AM, some of the potential benefits and opportunities it affords, and how new advanced simulation software from Altair is addressing some of the industry needs around it.

Development of the Next Generation Civil Tiltrotor
Leonardo’s Product Roadmap and the Associated Design Challenges. The Multi-Disciplinary Requirements of Tiltrotor & Other Lightweighting Studies.



This is a keynote presentation from the UK Altair Technology Conference 2019 by David Matthew, Lead Engineer at Leonardo. David joined Westland Helicopters as an undergraduate trainee in 1990, studying Mechanical Engineering at Imperial College and joining the Stress Office following graduation. Since then, David has worked within the airframe structure system group on a range of military and civil helicopter projects including the AW101 and AW189 helicopters, becoming a lead specialist in fatigue and damage tolerance, structural analysis, testing, and qualification. On the AW189 project, he led the analysis and qualification activities from preliminary design through to certification.



For the last year, David has been the Structures Lead Engineer for the Next Generation Civil Tilt Rotor project. This is a collaborative research project, which is part of the European Union Clean Sky 2 programme. This project is to develop technologies to support a large tiltrotor aircraft and to demonstrate these on a test demonstrator aircraft.

Page: 1  2   3  

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe