| Login

Resource Library

Keyword
GO
Categories










Industries














284 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Data Analytics
  • Design
  • Durability
  • Electromagnetics
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Altair HPC on Oracle Cloud Infrastructure
During his presentation, Wolfgang Dreyer, Senior Principal Product Manager HPC at Oracle Cloud Infrastructure reveales how the use of a cloud computing can benefit your product development teams; providing access to increased engineering capability and delivering unlimited compute capacity to aid the creation of your next product. He also discusses the perceived business barriers associated with cloud, such as security and compliance, and explain how Oracle’s cloud infrastructure has overcome these traditional hurdles

Development of A new vehicle front sub-frame using Altair Inspire topology optimization
Presentation by Edan Lazerson, CAE Engineer, Plasan.


The Stormrider is a new vehicle which was designed from scratch and developed by Plasan. Altair Inspire was used for Topology optimization In order to find the ""best"" design for the vehicle front sub frame. The available volume (design space), 5 different load cases and target mass were specified and the optimization software calculated geometry to maximize stiffness. The optimization results were complex to manufacture with traditional technologies; the simulation and design teams collaborated on designing a manufacturable front sub frame assembly. The new design was simulated to ensure it will withstand all the required loads. The front sub frame was implemented and tested on the prototype vehicle. The optimized front sub frame proved mechanically sound, while satisfying the mass and geometrical requirements. The early stage optimization reduced the development time, by creating a valid geometry however, the topology to manufacturable design process is not trivial. In this presentation, we will present the mentioned development stages and compare the test results to the simulation predictions.

Presentation at the ATCx in Israel, Netanya on October 30, 2019.


The Increased Importance of BIW & Powertrain Integration in Electric Vehicle Development
Jamie Buchanan, UK Technical Director at Altair presents at the 2019 UK e-Mobility Seminar. Global Review of the EV Architecture. Integration Opportunities (e.g. Battery System Packaging, BIW / Battery Tray Integration)

The Multi Physics Optimization of an e-Motor Rotor
Vincent Leconte, Director of Business Development - EM Solutions at Altair presents at the 2019 UK e-Mobility Seminar. Optimization of e-Motors, Case Studies: Jaguar Land Rover & Porsche. Cooling Simulation of the eMotors.

System Level Optimization of Key Electric Vehicle Powertrain Attributes
Gonçalo Pereira, Principal Applications Engineer at Altair presents at the 2019 UK e-Mobility Seminar. Trade-off Studies between Battery Pack, e-Motor, Range etc. System Model Generation to Explore Sensitivities.

CFD Simulation for Electric Vehicle Powertrain Development
Gareth Lee, Senior CFD Specialist at Altair presents at the 2019 UK e-Mobility Seminar. How multiphase SPH can support cooling and lubrication system development. Improving powertrain efficiency and thermal management for better EV performance.

Driving NVH Development Through Collaborative CAE Simulation & Real-Time Subjective Feedback
Peter Benzie, NVH Technical Specialist at Altair, Finn Kryger Nielsen, Business Development Manager at Brüel & Kjær and Dr. Michael Platten, Product Manager - NVH & Dynamics at Romax, present simulation coupling between e-motor, gears and vehicle BIW and discuss the NVH SQ Simulator – Driving Virtual NVH Test Sign-off.

Utilising the Natural Body Characteristics of EV Platforms to Maximise NVH Performance
Peter Benzie, NVH Technical Specialist at Altair presents at the UK e-Mobility Seminar 2019. Taking Advantage of Large Stiff, Heavy and Well Damped Battery System. Diagnose and Mitigate the EV modes that are Likely to Drive Response Issues.

Accelerating the Development of Highly Optimised EV Composite Structures through Multiscale Technology
James Eves, Team Manager at Altair presents at the UK e-Mobility seminar 2019. Multiscale methods to speed up the composite design process. Providing confidence in early design studies to improve the predictivity of final design evaluations.

The Challenges Associated with the Electrification of Motorsport Platforms
Michael Gascoyne, CEO of MGI Technologies presents at the UK e-Mobility seminar 2019.

Address the Crashworthiness Challenges of Electric Vehicles using Simulation
Peter Snape, Crash Technical Specialist at Altair presents at the UK e-Mobility seminar 2019. Developing a 5-star EV (eg. Specific Legislation FMVSS305). Exploiting Crashworthiness Opportunities of EV Architectures.

The C123 Process - A Rapid Simulation Process to Optimise the Weight & Performance Attributes of a BIW Structure
Dr. Stuart Bates, Concept Technical Specialist at Altair presents at the UK e-Mobility seminar 2019. Rapid Exploration of Packaging Alternatives e.g. Battery System Layout, Battery Frame / BIW Integration. Developing Balance Design (Weight vs Attribute Performance), Target Setting using Simulation.

Transformative Flight Transportation: Challenges Become Opportunities
Advances in energy storage, motor efficiency, and flight control systems have us on the potential cusp of a revolution in air mobility. This comes at a time when many traditional transportation infrastructures are saturated and new modes of mobility are desperately needed. The presentation will provide an overview of recent developments in urban- and extended-air-mobility and discuss the hurdles that must be overcome, not only technical obstacles but also challenges in regulations, societal acceptance, and business. It will provide context with an overview of our own technical challenges and successes, from the imminent Transition® to the aspirational TF-X.


Meet your Energy Efficiency Goals in your Electrification Projects with Simulation
Electrification is one of the main means of creating a low-carbon economy, allowing to use renewable energies and energy efficient technologies. Electric power enters many industries and also impacts our everyday lives, especially with the electric mobility. The use of power electronics and control systems allows offering better reliability, safety and low maintenance costs, and also brings additional innovative functions. Learn how Altair simulation and optimization tools can help designing highly efficient electric machines, as well as advanced control strategies to help you build innovative and energy efficient electric solutions.

Human Plus Machine: How Sarcos is Revolutionizing the Future of Work with Industrial Robotics
With the prospect of increasing labor shortages among a wide variety of industries, combined with the significant costs of occupational injuries and the ever-increasing pressure to increase productivity, leading robotics company, Sarcos is in a unique position to deploy industrial robotics designed to increase productivity while eliminating injuries, by augmenting rather than replacing human workers.

Chris Beaufait, COO of Sarcos, discusses the current robotics landscape, why automation is not the right solution to the problems industries are facing, how Sarcos and its product lineup - including the full body, fully powered Guardian XO exoskeleton - will play a critical role in defining the workforce of tomorrow, and his vision for the robotics industry over the next five to 10 years.

An Efficient and Automated Design Strategy for Multi-physics E-Motor Development
This presentation introduces an application of a unique, highly automatic, multi-physics design strategy for E-motors, based on a current program at Mercedes-AMG GmbH. The strategy considers essential development requirements including electromagnetics and thermal requirements, NVH, stress and durability. It accommodates for DOE, multi-objective optimization and design exploration methods to be used to explore and find feasible motor designs. The presentation will show how the strategy adds efficiency to the E-motor development process and how it impacts the total costs of development.

Physics-based Cell and Pack Models for System Simulation
Sendyne, part of the Altair Partner Alliance, provides a virtual, physics-based battery model called CellMod Virtual Battery for real-time co-simulation for individual cells and packs. This presentation provides a brief overview of the battery model and benefits as well as an example of system simulation using Altair Activate using the Functional Mock-up Interface standard for co-simulation.

Using Machine Learning and Optimization to Develop e-Motor
The Altair Multiphysics platform provides a broad portfolio of solvers and tools to help engineers develop e-motor design requirements by using simulation and optimization methods. This presentation provides examples, using Altair Machine Learning and optimization solutions, of the e-motor requirements by leveraging in data available, which is key for e-motor designers to reduce time-to-market.

Modeling the Thermal Runaway Behavior of Li-ion Batteries upon Mechanical Abused Loading
This presentation demonstrates Altair’s capability of simulating the behavior of a mechanically damaged battery from a cell to a pack integrated in a vehicle, based on collaborative research previously conducted with MIT. An innovative approach of applying electromagnetics loss to predict rising temperature due to short circuit effects during an impact is discussed, along with the development of a software tool, Battery Design, which enables OEMs and suppliers to design battery applications using multiphysics optimization, including mechanical-electrical-electrochemical-thermal behaviors.

The Key Role of Simulation in Development of Aluminum Profiles and Study of Glass Structures in Shorter Design Time
This presentation discusses advancements of the range and quality of products in the last few years at Faraone, thanks to the adoption of both Altair Inspire and SimSolid. SimSolid is a great tool that allows Faraone to study and refine the design of complex structures and a variety of different products, not just glass balustrades. In less than half an hour, it makes it possible to analyze and verify a three-story glass staircase, directly from the 3D CAD file, a simulation that would normally requires about half a day. Additionally, Moreover the original CAD drawing does not need simplification, SimSolid® works directly from the 3D CAD file, allowing fewer issues, and a better, final solution.

Machine Learning in 3D: Teaching Algorithms to Organize, Judge and Generate Parts
This talk presents the challenges of using 3D geometry in machine learning and demonstrates new techniques that Altair is using to teach algorithms about our 3D world.

Product Development with a Multi-attribute, Single Model Workflow
This presentation discusses an efficient work-flow for multiple attribute analysis and optimization using Altair HyperWorks CAE tools with the HyperMesh pre-processor and OptiStruct solver. A single finite element model has been built with all the three subcases, i.e. NVH, nonlinear strength (permanent set) and fatigue, in the same model as different load-cases. This makes analysis and iteration processes streamlined and efficient, as no model conversion is involved. Further optimization with the required set of responses and constraints are discussed in order to achieve at light weight design with performance target for dynamic stiffness, permanent set and fatigue damage.

Expert Emulation in Crash Optimization using Machine Learning
In optimization it is sometimes desirable, but not possible to define constraints that fully reflects an expert’s requirements. This may lead to a design that does not function as intended. Machine Learning enables the user to set up subjective constraints, ensuring a design that has been trained to replicate the expert’s opinion. In this presentation machine learning is used to ensure axial crush for an automotive front crash event.

Optimizing Powertrain Efficiency and Thermal Management for Improved Vehicle Performance and Energy Efficiency
This presentation focuses on presenting a synergy of different simulation methods and tools towards the accurate prediction of power losses, oil distribution and thermal effects focusing on an automotive and aerospace gearbox example. A number of different approaches are described, including CFD, gear design, bearing design and selection and oil selection, with the aim of maximizing efficiency and ensuring adequate lubrication of critical components and cooling of the powertrain components (e-motor and the associated gearbox)

Empowering Aerodynamic Design Exploration – Volkswagen Group Research Case Study
This presentation highlights Volkswagen Group Research’s novel approach to early-stage aerodynamic performance improvement using a combination of Altair’s simulation technology and VW’s proprietary reduced-order modeling technology. The unique technologies and approach have enabled early-stage design exploration and unprecedented collaboration between stylists and aerodynamicists with the goal of delivering both styling emotion and aerodynamic performance.

Automotive Cellular Antenna Elevation Angle Study
Automotive and smartphone cellular telecommunication system shares the same root. However, some design parameters should have differences because of different design environment and user experience. One of the big design differences can be found on antenna design, especially antenna gain on elevation angle radiation pattern. This presentation is about a study of the elevation angle for better automotive telecommunication systems antenna design.

Upcoming New Wireless Solutions and Applications, including 5G
The rollout of 5G technology is going to be a boon across many industries globally, with the expansion of IoT and connected devices, and where lower latencies are opening the door to time-critical areas like autonomous vehicles, industrial IoT and healthcare. In this presentation we will share new applications and use cases from different major verticals, showing how organizations are designing innovative products using Altair electromagnetic simulation solutions related to antennas, wave propagation modelling, radio network planning and EMC applications. We will also talk about new solutions we have recently launched, and about what is available and coming in 5G.

Design for Additive Manufacturing with Topology Optimization
Presentation by Avishai Warszawski, Mechanical Designer at IAI, Israel Aerospace Industries at the ATCx in Israel, Netanya on October 30, 2019.

The goal of this project is to design a lightweight and stiff support bracket for delicate coaxes which are attached to an electronic unit. The machining design of this bracket, although very light in weight, did not provide the required stiffness and was also very expensive to manufacture. The best approach for design was only realized after the AM team was requested to find a solution. Topology optimization with Altair tools was used to define the best shape that provides the best solution. Finally, the bracket was printed in an SLM machine from AlSi10Mg. In the near future it will be qualified by dynamic tests in accordance with the defined environmental loads.

Design of Broadband GNSS Antennas
Presentation by Oren Mamane - Afeka College of Engineering at the ATCx in Israel, Netanya on October 30, 2019.

Conceptual Design and optimization of an Electric Motor
Presentation by Koby Ingram, Gevasol BV.

Conceptual Design and optimization of an Electric Motor using Altair Flux and HyperStudy. The customized electric machine with high level demands and efficiency is a challenging topic requiring top level of expertise and best in class simulation tools. This work focuses on the usage of Flux and Hyperstudy as tools for bettering the design and design process of e-motors.

Presentation at the ATCx in Israel, Netanya on October 30, 2019.

From MBD to FSI Complete firearm development
Presentation by Eitan Maler, Head of Simulation Department & by Konstantin Arhiptsov, Simulation Engineer
Israel Weapon Industries (IWI) at the ATCx in Israel, Netanya on October 30, 2019.

These days, in IWI, complete multi physics simulation is an integrated tool in the development of any new product. The motivation is to completely simulate one or two firing cycles as close to reality. First step is the Multi Body Dynamics simulation to check all mechanism are synchronized and work properly. Second is the explicit simulations - calibrating the mechanical properties of the pistol, in that the springs, contacts, materials and gun powder properties based on one firing cycle. The following is to calibrate the Non Rigid Boundary conditions (NRBC’s). This calibration of boundary conditions which are not completely fixed is crucial to understanding the actual strains and stresses on the parts. One of the approaches was to use known data of the stiffness of arm and wrist, implementing this data into a HyperStudy model to compare and calibrate the results based on a slow motion capturing of a real firing. The results are promising, with high accuracy of the behavior compared to a real capturing of the shooting, up to the point of slider getting to the end of its move – where most of the kinetic energy transform into loads on the frame. The following steps will be to calibrate, using the same method, the return of the slider to it’s original position and perform more than one firing cycle.

Hyperworks X Highlights & Future
Presentation by Sergi Chanukaev, Country Managing Director, Altair Israel, at the ATCx in Israel, Netanya on October 30, 2019.


Shielding Effectiveness Analysis
Presentation by David Aviram , EM Expert in Israel, Altair.


Presentation at the ATCx in Israel, Netanya on October 30, 2019.

Dynamical RCS - Helicopters in pulsed Doppler radars image 
Presentation by Tal Oz, Officer, Israeli Air Force.

Many modern radars measure the radial velocity of airborne targets using Doppler shift to distinguish between real targets and clutter (trees, clouds, birds). Radial velocity and Doppler shift are directly related for regular airborne targets such as Boeing 747 but even a standing still helicopter will produce some sort of measurable Doppler shift. It is a computationally difficult task to find the relevant helicopter RCS but a feature provided by Feko, the ""Numerical Green Function"" can dramatically improve computation time of such problems. The lecture will begin with relevant Radar and RCS introduction, some highlights of important Feko features and dynamic RCS results of a CAD model of a helicopter.

Presentation at the ATCx in Israel, Netanya on October 30, 2019.


The Future of Decision Making
Engineering is in almost everything we touch, a part of every human experience. It’s in the planes and trains we travel in, the cars we drive and the appliances and electronics we use every day.

Engineering advanced products requires a meticulous, Multiphysics development process, in which products are simulated, optimized, challenged and then challenged again, leaving no room for the design to fail.

That’s where Altair and Altair’s technologies make all the difference.

This presentation will illustrate the power of Altair’s simulation technology through several practical examples applied to some of the most common product development challenges in automotive, aerospace, and other industries.

Socomec & Mahou Case Study - Enabling Connected Products, Solutions for a Connected World
The world is undergoing a digital revolution, with many enabling technologies maturing simultaneously to fuel this disruption. The Internet of Things is one such enabler that is rapidly being adopted by Industrial Equipment OEMs to enable their product lines to provide realtime in-service insights that are helping to transform and evolve their business practices. This presentation demonstrates how the Altair SmartWorks solution package is helping customers such as Socomec (Innovative Power Solutions) and Mahou San Miguel (Brewing) are embracing this digital transformation, and migrating their information systems backbone to a connected services portfolio offering.

Enabling Smart Buildings – Leveraging the Power and Breadth of IoT to Create Simple and Low Cost Smart Building Solutions
Smart Building solutions are traditionally known for being highly complex and costly, limiting their application mainly to large, commercial buildings. Over the past several years, however, rapidly changing technology has allowed thousands of new, powerful, and inexpensive IoT sensors to hit the market — making it possible to implement smart solutions in small and mid-sized buildings which make up 90% of the commercial building stock globally. Learn more about how Altair’s SmartWorks platform is enabling commercial building owner/operators and service providers to create and deploy smart and connected building solutions to affordably and efficiently collect large data sets on their building assets which can be used downstream to optimize the building’s efficiency.

Data Driven Models for HVAC Load Prediction
Consumers electric bills typically have two primary components: energy charges and demand charges. Demand charges are significantly costlier (10 times on average) than normal energy charges because of the inherent production cost to maintain the demand over a certain limit. This presentation proposes a model which can forecast upcoming demand charge events which in turn can help the consumers in optimizing their energy usages and hence help them avoid going to demand charge band.

Smarter ways for Optimizing Product Performance with the help of Altair’s Digital Twin Platform
"This presentation will feature the building blocks that form Altair’s Digital Twin Platform - a comprehensive and flexible toolbox that enables users to build a digital twin that best meets their specific needs.

With the help of the specific use case of TeamTao’s Autonomous Underwater Vehicle (AUV, the talk will “dive deeper” into approaches for making the development of complex systems smarter."

Driving Manufacturing Decisions with Machine Learning
Sheet-metal stamping is one of the most common manufacturing processes in the automotive industry, yet it requires experience to sort-out the most adequate and cost-efficient sub-process for every part. This presentation will demonstrate how Knowledge Studio was used to train a classification algorithm to accurately and consistently predict the correct stamping process for each new part.

Virtual Design and Testing of a Medical Autoinjector
Nolato specializes in polymer-based product design and manufacturing to virtually design a device to automatically inject medicines, such as insulin for diabetic patients. Within this presentation different aspects of the product design cycle are considered, including co-simulations of the device operation during the actual injection process, misuse in case of forceful bending or opening of the loading tray, and drop tests of the autoinjector. Based on Altair’s optimization technology, alternatives for the rib structure of the casing are investigated. To assure manufacturability, molding and assembly simulations are performed to identify and mitigate problems likely to occur throughout the process.


The Convergence of Simulation & Data
Jim Scapa brings more than 35 years of business growth, innovation and cultural stewardship to his role as founder, chairman and CEO of Altair.

Jim and two partners identified a need and formed Altair in 1985 with a focus on the then-new field of simulation using high performance computing. Today, through Jim’s leadership, the company employs more than 2,000 employees with 81 offices across 25 countries.

Altair is a leading global provider of simulation and optimization software, high performance computing technology, product development software and consulting, and data analytics solutions to a broad range of industry sectors including automotive, aerospace, government and defense, heavy equipment, ship building, energy, electronics, life sciences, architecture, finance, and construction. Growth has been achieved both through long-term nurturing of internal technology development, and by strategic acquisitions of complementary technologies which have been successfully integrated into Altair’s offerings.

Jim holds a bachelor’s degree in mechanical engineering from Columbia University and a Master of Business Administration from the University of Michigan.

Identifying and Capturing Business Growth Opportunities with Machine Learning
This presentation describes how machine learning is creating another disruptive methodology for Maxion Wheels as well as the returns the company is already realizing with this new approach in terms of quality, reliability and profitability.

Piloting SimSolid for Fast Directional Feedback to Reduce Product Development Timelines
"The analysis team at CNH is piloting Altair SimSolid™ as a design refinement tool solution for providing fast directional feedback to the engineering team.

CNH has performed some correlation studies against HyperWorks FEA for accuracy, and has established some criteria for identifying the appropriateness of SimSolid in our workflow. It has been determined that good correlation is attainable even with relatively large assemblies. The relative speed in SimSolid vs that of HyperWorks has shown to vary widely from study to study. This presentation shares CNH's experiences and recommendations with this software."

Collaboration between the Design Studio and Aerodynamics – the future
This presentation discusses Altair’s capabilities for analyzing and refining ideas during the concept stage of automotive design. The ultimate objective of all CAE is improved decision making and this is achieved by understanding the multiple behaviors of the widest variety of ideas as soon as possible in the design process. The presentation will illustrate how newly released Altair tools can be used to bridge the gap between Aerodynamics and the Design Studio to understand the performance of ideas as early as the sketch pad, using the skills and resources you already have in house. Altair’s vision for conceptual design in the future will be presented.

Rapid Exploration and Development of Intelligent & Efficient Vehicle Architectures
Altair's C123 process to create Simplified Loadpath Models (SLMs) for advanced body in white (BIW) design concepts provide a highly flexible and rapid platform to explore body structure loadpath alternatives and performance: weight optimization. The C2/SLM modelling process combines higher order Beam and Bush finite elements with coarsened Shell-meshed panels to represent the body structure. FCA US LLC has understood and validated the C2 process for a BIW, and correlated key structural performance metrics to higher order, detailed Finite Element (FE) models. While the benefits of loadpath optimization through Beam element parameter variation is well-documented, and applied extensively for these types of models, this presentation provides a better understanding of the sensitivities and influence of joint stiffnesses on key body structure attributes to promote more intelligent and efficient body structure joint designs.

Multi-Disciplinary Evaluation Of Vehicle Platooning Scenarios
Presenter: Christian Kehrer, Business Development Manager, Altair


This presentation discusses the multi-disciplinary evaluation of truck platooning, with the lead truck sending out acceleration, braking and steering signals for the following trucks to react accordingly. The benefits address safety requirements, fuel savings, traffic capacity and convenience.

The presentation demonstrates why platooning requires a holistic approach in the sense of connecting different modeling and simulation methods for a virtual evaluation of this system of systems.

Exoskeleton Modeling Using MotionSolve & Activate
Presenter: Nino Michniok, Mechanical Engineering Student, University of Kaiserslautern


The first part of the presentation shows the detailed process of building the multibody system of an actuated exoskeleton in MotionView/MotionSolve (MV/MS). The required movements are transferred to the corresponding joints by “Motions”. By this the exoskeleton can Stand Up, Walk diagonally across the floor and Sit Down. In the second part the “Motions” in MV/MS are replaced by controllers (position control) whichdeliver a certain torque to actuate the exoskeleton. The main topic here is the implementation of the co-simulation between Activate and MV/MS. In the end the presentation gives a quick outlook of similar works at the University of Applied Sciences Kaiserslautern in Germany.

Deep Reinforcement Learning for Robotic Controls
Presenter: Dario Mangoni on behalf of Alessandro Tasora, Engineering Professor and Digital Dynamics Lab Leader, University of Parma


This presentation address the use of the Proximal Policy Optimization (PPO) deep reinforcement learning algorithm to train a Neural Network to control a robotic walker and a robotic arm in simulation. The Neural Network is trained to control the torque setpoints of motors in order to achieve an optimal goal.

Mobilizing Humanity in a New Way
In this presentation, Rob Miller, Chief Marketing Officer, discusses how Hyperloop Transportation Technologies and its partners are building a transportation system that moves people and goods at unprecedented speeds safely, efficiently, and sustainably. Through the use of unique, patented technology and an advanced business model of lean collaboration, open innovation and integrated partnership, HyperloopTT is creating and licensing technologies.

Founded in 2013, HyperloopTT is a global team comprised of more than 800 engineers, creatives and technologists in 52 multidisciplinary teams, with 40 corporate and university partners. Headquartered in Los Angeles, CA, HyperloopTT has offices in Abu Dhabi and Dubai, UAE; Bratislava, Slovakia; Toulouse, France; São Paulo, Brazil; and Barcelona, Spain. HyperloopTT has built a full-scale prototype in Toulouse, France and has signed agreements in the United States, UAE, France, India, China, Korea, Indonesia, Slovakia, Czech Republic, and Ukraine.
"

The role of finite element analysis in the development and optimization of novel sports head protection
Head health and safety has been an emergent theme within the scientific community, with an emphasis on mild traumatic brain injury. Protective equipment, such as helmets, provide a method of reducing the forces of impact that are delivered to the brain. However, innovation in this field has been limited and up until recently, the prevalent technology in most helmets on the market consisted in foam cushions and/or inflatable bladders. In fact, in 2006, several researchers estimated that improvements in helmet technology would become limited by the inherent properties of foam materials traditionally used in protective equipment. In 2015, VICIS announced a new impact mitigation concept based on buckling a filament structure. The first production helmet, the ZERO1, used a comprehensive suite of physical tests and additive manufacturing to implement a rapid and iterative design process. Finite element modeling (FEM) was introduced during the development of ZERO1, in a way that complimented the established fast-paced protype and test method.

FEM allowed for accurate simulations in a rapid and repeatable method. In addition to the non-linear geometric and material response, the majority of components in the ZER01 are soft bodies that experience large deformation. HyperMesh and Radioss provided the stable platform to evaluate impact performance as well as part durability. This study reviews the role and implementation of FEM in VICIS's second production helmet, the ZERO1-Youth, and the progression from component-level to system-level simulations.

Empathetic Engineering
Andiamo started with a belief that having a happy family is a basic human right. What happens when you build a company that is totally focused on the outcome of a happier family? What happens when you embed empathy into the engineering process?

Vehicle Concept Design using Ride & Comfort Requirements for Truck & Trailer System Dynamics
Presenter: Kaustubh Deshpande, Chassis Engineer, Nikola Motor Company


This presentation describes Nikola Motor’s progression of design maturity from 1D CAE to 3D CAD/CAE for chassis system engineering work on their electric trucks. This progression spans from Voice of Customer to Functional Requirements to Functional Deployment to Structural Deployment.

Nikola Motor starts with a ‘First Principles’ model of their truck/trailer vehicle dynamics, then they perform system modeling & simulation with Altair Activate using quarter- and half-truck/trailer models. Block diagrams are created using both signal-based blocks and physical-based blocks (with Modelica).

Through this methodical process, Nikola Motor is able to derive more and better insight earlier in their development process regarding important vehicle characteristics for their trucks – ranging from ‘yaw rate of the tractor for loaded vs. unloaded trailer’ to ‘full-trailer load distribution sensitivity due to fifth wheel location’.

Work is in-progress to tighten the connection between their 1D CAE simulations in Altair Activate™ and their 3D CAE multi-body dynamics simulations.



Heavy Equipment Simulations: Multi-body, Hydraulics & DEM
Presenter: Ronald Kett, Technical Specialist, Altair


For a Stewart-Gough-Platform (Hexapod), various software tools were used to study and design highly dynamic hydraulic drives together with an overall system control. Calculation of Eigenfrequencies, control design and comparison, hydraulic system design, and overall simulation control were done in Altair Activate, the mechanics of the Stewart-Gough-Platform was taken from a CAD model into Altair Inspire Motion. The co-simulation between control + hydraulics and mechanics was performed using Activate and Altair MotionSolve. Altair HyperView and HyperGraph were used to analyze and visualize the results.

With the highly integrated solutions, the results could be achieved within a very short time. The different types of models (linear/simplified/full mechanics/hydraulics) made it possible to start with fast development cycles and finally achieve reliable results.


Real-Time Simulator of a Mobile Crane
Presenter: Arnold Free, Chief Innovation Officer and Co-Founder, CM Labs

Mechatronic systems and off-highway equipment design is rapidly evolving. With advanced control features, operator-assistance systems, and even full autonomy on the horizon, engineers are building complex systems simulation models to better understand their smart machines. Through the use of interactive and immersive VR software, systems models can be derived from high-fidelity engineering simulations and used for operator-in-the-loop, HIL, and SIL testing. Interactive virtual prototypes allow for human-factors test and measuring system performance in hyper-realistic virtual worksites. Simulation is also being used for AI based perception and motion planning in autonomous systems. Sales and marketing departments are now using interactive simulations and visualization to demonstrate products. The value of simulation is expanding rapidly in OEMs. CM Labs Simulations has recently partnered with Altair to bring together engineering simulation and interactive real-time systems models to perform all of the above. Validated multibody systems dynamics models from Altair MotionSolve can be used to build interactive models in Vortex Studio and combined with advanced real-time 3d graphics to create immersive live simulations with human interaction. With real-time simulation, it is also possible to connect to interactive control models and system level multidisciplinary simulations with Altair Activate. The presentation uses a mobile crane model as an example. It will demonstrate the process of translating the engineering models to real-time, creating realistic working scenarios and deploying in immersive simulators for operator in-the-loop testing and system demonstration.

Quadcopters: From System Modeling to Real-Time Simulator
Presenter: John Straetmans, Computer Engineering Student, University of Michigan

This project attempts to build an accurate real-time (RT) drone simulator through the full integration of a 1D functional model of a drone created in Altair Activate®, along with its corresponding geometry, into Unreal Engine via the Functional Mock-up Interface (FMI) standard. Then, VR, peripheral controllers, and other functionalities were added to the representation. This task was accomplished by modifying the Altair RT Vehicle Package, making it able to handle not just vehicles, but any system model located in an FMU for co-simulation, in this case a quadcopter model. Once the FMU containing the Altair Activate® drone model was successfully loaded into Unreal Engine, the tools provided by the application allow additional features to be added, such as VR support. By implementing an FMU, together with its geometry, into Unreal Engine, we can visually analyze the dynamics of the system to further verify the drone model and its performance. In the future, this integration process should be facilitated to automatically load any FMU following just a few steps.

Modelica Library for Real-Time Car Simulator
Presenter: Dario Mangoni, Engineering Professor, University of Parma


In the modern car industry, the advent of hybrid and electric vehicle systems is driving radical changes in the car electronics and software, demanding more and more advanced controlling techniques. Self-stopping, self-starting, ultimately self-driving cars are nowadays possible, because of the multitude of sensors, controller units and actuators making the vehicles “smart”. To simplify and make the interaction between the user and the machine more and more intuitive and user-friendly, a much broader and deeper investigation of different use scenario combined with the human interaction and intervention is critical. In this context, higher-detailed vehicle models are required to provide a valid prototyping tool which can be reliably used to test innovative controlling strategies, such as testing with the Man-In-the-Loop.

The Car Real-Time Modelica library proposed here aims at providing a highly valuable tool for the vehicle control system design and test. The key competitive advantages in this approach are in the Maple model-based compiler for supporting high-level of details modeling; the adoption of the Modelica language which allows a transparent and physical approach to the modeling activities and finally the Activate platform which offers real-time capabilities within an environment meant for the signal-based control design. To graphically validate the library results, a visualization framework for realistic real-time simulations that assures high-fidelity scenario in which to test user experience was also realized.

Multi-body Enhancements & Customer Successes
Presenter: Rajiv Rampalli, Sr VP in HyperWorks Core Development team, Altair


Altair’s products for multi-body system simulation (MBS) – MotionView, MotionSolve, and Inspire Motion – form a key component of multi-disciplinary system simulations. In this presentation, we will look back on several achievements this year, in the form of customer successes as well as recent enhancements to these products which significantly extend the depth and breadth of capabilities.

Some of these application examples also involve connections from MBS to other Altair technology or to 3rd-party technology such as to Altair OptiStruct (for flexible bodies and light-weighting) and Altair Activate (for hydraulics) and EDEM (for discrete element modeling of bulk materials).


System Simulation for HVAC
Presenter: Christian Kehrer, Altair [on behalf of Oliver Höfert, Simulation Engineer at Kampmann]


The increasing virtualization of engineering methods is inevitable. This also holds true for the design of systems that take care for the thermal well-being of humans, e.g. in buildings. If it comes to simulation of so-called HVAC (heating, ventilation, air conditioning) systems, very often high fidelity approaches like CFD are connected to it. In contrary, this contribution illustrates a 1D modeling approach of a heat exchanger in use of Altair Activate.

The presentation explains the implementation of the NTU (Number of Transfer Units) method in a system simulation environment. This includes a short description of the approach itself as well as its current limits. Based on the implementation of a single cell, differing network configurations for the evaluation of use cases of varying complexity will be shown.

ROMs For Battery Cooling Systems
Presenter: Stefano Benanti, R&D materials engineer, Hutchinson


Battery cooling (BC) systems are frequently composed of several parallel branches, each leading to and away from a series of cooling plates. As a correct flow distribution in each branch and overall pressure drop are a key requirement from every customer, numerical computation is extremely important from the first stages of each project: the number of components and their dimensions have a relevant impact on the total cost and it is thus necessary to quickly provide results already in the Request for Quotation (RFQ) phase.The 3D computation of such cases, albeit feasible, takes a relevant amount of time and makes it more costly (both in terms of computational power and of necessary software licenses) to quickly provide results. The goal is then to develop a quicker method to provide results and allow for the necessary optimization cycles.

Altair Activate® was chosen by Hutchinson to develop a library of ROMs representing different circuit components through which is possible to create 1D models able to respond quickly and precisely to such demands.

Integrated Systems Simulation from Requirements
Ed Wettlaufer, Technical Manager Mechatronics Group, Altair [on behalf of NAVAIR]


Government solicitations for proposals, or RFPs, for aircraft and airborne systems require preliminary designs with enough fidelity to accurately predict performance, in order to prove the design's ability to meet the Governments performance requirements. Modern high-performance computing provides the leverage to execute previously expensive analyses in areas such as computational fluid dynamics. The results of these high order analyses can be used to populate parameters in 1D systems models which can be easily coupled to medium order models from other disciplines. These capabilities allow the design engineer to rapidly iterate to levels of model maturity and accuracy not achievable years ago, resulting in high levels of confidence in the designs performance predictions in unprecedented time.

Moving forward, Altair engineers will employ Multiphysics and co-simulation to execute the Engineering and Manufacturing Development phase (EMD) for one subsystem of the preliminary design developed in the afore mentioned pre-acquisition phase.

Multi-Fidelity E-Motor Drive Solution
Presenters: Ulrich Marl, Key Account Manager for Electric Vehicle Motor-Feedback Systems, Lenord+Bauer & Andy Dyer, MBD Sr Technical Specialist, Altair


This presentation shows a modeling process to quantify the position/speed sensor (e.g, encoder) effects on an e-motor, and corresponding control system for a concept traction motor similar to the Nissan Leaf. The integrated solution of the e-drive is carried in Altair Activate as a system builder, using other Altair solutions e-motor solutions in FluxMotor and Flux to generate data for the e-motor itself, as well as the optimal current values for the Field-Oriented Contoller. The inverter is driven with efficient space vector pulse width modulation. The integrated solution also supports different levels of modeling fidelity for the system components, for example for the e-motor where either direct co-simulation with Flux for detailed finite element analysis or a reduced order model (ROM) using look-up tables. In this way, sensor design parameters can be evaluated within an accurate system of the e-drive to improve performance and efficiency.

Solving Challenges in Electric Motor Design
Presenter: Berker Bilgin, Assistant Professor of Engineering (ECE) at McMaster University and co-founder of Enedym Inc.


Electric motors in general, are made of certain parts, such as the stator, rotor, coils and magnets, and mechanical parts. These parts might look simple and bulky from the outside, however, the highly interrelated relationship between the geometry of these parts, characteristics of materials, and the way the current is controlled, defines the cost, size, efficiency, performance, and lifetime of the motor. In electric motor design, multidisciplinary aspects are highly interrelated. The effect of various parameters on the electromagnetic, thermal, and structural performance should be investigated together to come up with an optimized design. This is possible by developing the platforms where the multidisciplinary aspects are modeled in a software environment, as we are doing with Altair software.

Altair MBD: Celebrating Accomplishments, What's Next
Presenter: Michael Hoffmann, Sr Vice President of Math & Systems, Altair


In this presentation, Michael Hoffmann, Sr Vice President, shares the company’s vision & strategy for Altair’s Math & Systems tools for Model-Based Development – based on providing an open platform tightly connecting 0D to 1D to 3D modeling & simulation. At different stages of their product development cycles, engineers can model and simulate their increasingly complex products as multi-disciplinary systems by using equations, block diagrams, and/or 3D CAD geometry.
His scope includes Altair Compose™, Altair Activate™, Altair Embed™, and Altair MotionSolve™ as well as the multi-body motion capabilities in Altair Inspire™. He also spotlights several recent success stories about customers who have used these technologies to drive innovation through simulation.

The Wahoo KICKR Bike: Designing a Ride Experience that Blurs the Line Between Virtual and Reality
As more products enter the market that simulate real world experiences, consumers' expectations are rapidly increasing. To meet these rising expectations the hardware and controls required are becoming more complex while maintaining time to market and cost. To achieve this, efficiencies are required in the control’s development and hardware tools chains. Wahoo Fitness and Altair collaborated to create the new Wahoo KICKR Bike utilizing a Model-Based Design approach to controls development combined with a simulation driven design process to meet the high expectations of the bike trainer community.

Experience the Sound of Your Future EV Before it is Built
Achieving the targeted brand image in a short development cycle time with minimal or zero prototypes is a major challenge faced by EV companies. To overcome this challenge, Altair, HBK and Romax have jointly developed a simulation driven process coupled with capabilities to virtually experience the noise and vibration characteristics, giving engineers a way to obtain real time performance feedbacks as the vehicle is being developed.

This joint presentation on the proposed NVH development process covers a wide range of topics, including benchmarking, target setting, full vehicle and motor gearbox simulation loadcases, troubleshooting, optimization and stochastic analysis, and playback of simulation results for subjective evaluations, with a number of new technologies representing the global best practice in sound and vibration design and development. Join us to explore ways to control the sound and vibration characteristics of the vehicle, achieve the right sound, and avoid common NVH pitfalls, while accelerating time to market utilizing and experiencing virtual NVH prototypes.

Internal Noise Simulation/Emulation
Presenters: Rafael Morais Cunha, CAE Engineer in NVH, FCA Group & Frederico Luiz de Carvalho Moura, NVH CAE Leader, FCA Group


To make the driving experience more comfortable for passengers inside a vehicle compartment, in an increasingly shorter development cycle, predictive methods for the acoustic response characterization are used by vehicle engineering teams. The main purpose is to estimate the sound field in the car cabin.

The FCA NVH team identified in Altair tools an excellent opportunity to develop a complete solution for acoustics simulation. Supported by the Altair technical team, new methodology was created to convert frequency domain analysis into actual sound waves. This method was used to study the NVH steady-state acoustic performances. And development is in progress to simulate an acoustic environment to reproduce all vehicle noises in operational condition.

Using this methodology, it’s possible to virtually understand the acoustic behavior of vehicles, helping to make decisions in early design stages which could save design cost, time and also improve the driving experience for passengers.

Industrial IoT (IIoT) Networks Powered by 5G New Radio
The 4th industrial revolution or the digital enterprise will re-build the business models in various industries through connectivity. The drivers for 5G NR in industrial IoT (IIoT) networks are (i) increased productivity, (ii) digital transformation through wireless technology and (iii) the use of private networks. The industrial IoT (IIoT) network will be scalable in connectivity, and number of devices and will be designed to deliver optimal performance for all industrial applications using key LTE and 5G NR features like URLLC, mMTC, 5G positioning, time sensitive communications (TSC) and to a lesser degree eMBB.

This presentation begins with an overview, use cases and requirements for IIoT. The presentation discusses the foundation for URLLC in NR which was laid out in 3GPP Rel 15, mainly in support of IIoT, and URLLC enhancements in Rel-16, NR Positioning (Rel-16), TSC (Rel-16) and a version of NR known as NR-Light which is planned to be introduced in Rel 17. NR-Light aims to address use cases that cannot be met by NR eMBB, URLLC or mMTC. The system performance for an indoor ray traced factory using key 5G NR features like URLCC and TSC is presented.

Conductor Impedance and Near Field Simulation using Altair Flux
Altair Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux PEEC is a dedicated environment to electrical interconnection modeling for EMC and power electronics applications, from small wire bonds and PCB tracks, up to busbars, power modules and large distribution switchboards. Flux PEEC evaluates parasitic inductances and capacitances, analyse the current distributions and resonances, including skin, proximity and capacitive effects and computation of Joule losses, radiated magnetic fields and Laplace forces.


Lead-Time Reduction at Renault with Altair SimSolid
Renault presented on their use of Altair SimSolid at the HyperWorks 2019 Roadshow in France. They showed a reduction in lead time from weeks to hours with results accuracy within 5% of their standard processes.

Altair SimLab: The New Platform for Multiphysics
Altair SimLab: The New Platform for Multiphysics
Gunaseelan Krishnasamy, Vice President, SimLab Development, Altair

  •  
Machine Learning Applications in Engineering
Machine Learning Applications in Engineering
Dr. Shidan Murphy, Director APAC Solutions Specialists,
Data Intelligence, Altair

  •  
New Generation User Experience of HyperWorks
New Generation User Experience of HyperWorks
Michael Dambach Sr. Vice President, HyperWorks Program Management, Altair

  •  
Digital Twin
Digital Twin
Pavan Kumar, Sr. Vice President-Global Indirect Business &
P K Thukaram, Advisor - Heavy Engineering, Altair

  •  
Multiphysics Optimization of Traction Motors For E-mobility
Multiphysics Optimization of Traction Motors For E-mobility
Vincent Leconte, Sr. Director, Global Business Development-EM Solutions, Altair

  •  
Simulation V Atoms
Dr. Nuno Lourenco, Senior Manager Body Engineering at Jaguar Land Rover presents at the 2019 UK Altair Technology Conference. The increasing complexity of mechanical systems across multiple industries poses challenges to simulation activities, where solvers, pre- and post- processors often fail to capture all control variables and noise factors affecting a system and can lead ultimately to a gradual loss of credibility to simulation tools and engineers. A hypothesis is presented that the answer is to tackle that system complexity through simplicity, in an approach that is more akin to software development rather than traditional mechanical
system design.

Taking on the Shell XPRIZE with Help from a Digital Twin
Chris Wilkinson, CTO at SMD speaks at the UK Altair Technology Conference 2019. An XPRIZE challenge is designed to source new approaches to solve difficult problems thereby disrupting existing markets or creating new ones. Our oceans cover over 70% of the planet with only 5% explored. The ocean environment is hostile and technically challenging to operate within. The Ocean Discovery XPRIZE competition was established to seek cheaper and faster solutions to survey the world’s oceans. This presentation is about one of the teams that entered the competition with a disruptive solution for ocean survey. The emerging role and importance of a digital twin is explored to support the solution as it scales from proof of concept to one that is fully industrialised.

Solving Problems in Product Design in Aerospace
Robert Fox, Engineering Associate Fellow at Rolls-Royce presents at the UK Altair Technology Conference 2019.

This presentation provides some background on Rolls-Royce products and how CAE has changed the way in which such complex products are certified as being safe to fly. The presentation then moves on to outline some ways in which CAE is now being employed earlier in the design process to develop the next generation of aircraft engines. It concludes with some background on how Rolls-Royce engages with students and Universities engaging in CAE projects.

Delivering Product Innovation Through Simulation
Dr Gero Kempf, Chief Engineer - Body Strategy at Jaguar Land Rover presents at the UK Altair Technology Conference 2019. Dr Kempf is a graduate from Technical University Munich (TUM) and holds both an Engineering Doctorate in Computer Science, from the faculty of electrical engineering, and a Dipl. Phys. in Technical Physics including electrical and mechanical engineering.

Gero had a number of positions in various functional areas at BMW taking him to be Vice President Lightweight Innovation in 2014. In 2015, Gero joined Jaguar Land Rover. As well as his role in Body Engineering Strategy, Gero is involved in a number of research fields at JLR in the area of future mobility. In 2016 he was made an Industrial Professor to the Warwick Manufacturing Group of Warwick University. In addition to his commitments to Jaguar Land Rover, he also supports the development of expertise in battery production and testing, lightweight body construction in aluminium and composites, and highly automated driving.

Development of Carbon Fibre Floor Structure for the NIO Electric SUV
NIO are a global automotive startup producing electric vehicles for the China market. Our second vehicle, the ES6, was unveiled in December 2018 in Shanghai. It features a lightweight carbon fibre rear floor body structure, which will become the first high volume CFRP production part in ASIA. This presentation describes the CAE activities undertaken to develop the composite body structure. It explains the approach that was taken to construct and validate the material cards and the various material tests involved. It explores the various CAE activities used to develop and optimise the design of the parts and the layups of composite layers, and then the successful validation of the parts.

Using Advanced Simulation to Design Leading Motorcycles
Rod Giles, Group Manager CAE & CAD presents at the UK ATC 2019. Royal Enfield has and is undergoing a massive transformation, not only in the sales and manufacturing departments, but also in the way the motorcycles are designed and developed. Leading the way in the development of all new motorcycle platforms is the use of advanced Computer Aided Engineering (CAE) tools. At Royal Enfield we use a wide array of different tools and techniques. The primary tool for model preparation and analysis is Altair Hyperworks. Rather than trying to cover the vast range of analyses carried out, today I will concentrate on some examples where advanced techniques have helped the design process including using smooth particle hydrodynamics (SPH) in explicit analysis to evaluate fuel tank integrity, using NVH director to evaluate and improve transfer path analysis (TPA) to aid the rider comfort, using topology optimisation to reduce mass and improve structural performance of engine and chassis components, and using MotionSolve to understand complex mechanism dynamics.


Empowering Designers with Predictive Simulation Technology
Jon Heath, Lead Mechanical Engineer at Brompton Bicycle presents at the UK ATC 2019. The Brompton bicycle has been engineered over many years using very much traditional engineering development methods. Introducing FEA tools and methods into the development process has allowed Brompton to reduce development time and improve early stage design robustness.



This presentation details how the company has implemented the Altair Inspire, SimSolid and HyperWorks suites into its development process, enabling its design team to find problems quickly and correct them before prototyping.

A New & Revolutionary Way to Collect Energy from Wind
David Yáñez presents at the UK ATC 2019. Vortex Bladeless is a Spanish start-up that is developing a new wind energy technology. Its key characteristic is the minimization of mechanical elements that can be worn by friction. In the first stage, its application area seems to be distributed energy. For its development, CFD tools are being of vital importance. Both the fluid-structure interaction and the behavior of the magnetic fields in the alternator are being studied mainly with this type of tool. The results obtained are being contrasted with experimental results obtained both in wind tunnel and in real application environments.

A general vision of the technology, the strategies used for the integration of the different physical phenomena involved and the path traveled for its development will be exposed.

Additive Manufacturing, Lattice Structures and Advanced Simulation: the Good, the Bad & the Ugly
Simon Jones, Technical Director at HiETA presents at the UK ATC 2019. Additive Manufacturing (AM) offers huge potential to create structures and designs that are not realisable through conventional manufacturing methods, and deliver real engineering benefit. HiETA will talk about our experience of developing complex thermal management structures using AM, some of the potential benefits and opportunities it affords, and how new advanced simulation software from Altair is addressing some of the industry needs around it.

Development of the Next Generation Civil Tiltrotor
Leonardo’s Product Roadmap and the Associated Design Challenges. The Multi-Disciplinary Requirements of Tiltrotor & Other Lightweighting Studies.



This is a keynote presentation from the UK Altair Technology Conference 2019 by David Matthew, Lead Engineer at Leonardo. David joined Westland Helicopters as an undergraduate trainee in 1990, studying Mechanical Engineering at Imperial College and joining the Stress Office following graduation. Since then, David has worked within the airframe structure system group on a range of military and civil helicopter projects including the AW101 and AW189 helicopters, becoming a lead specialist in fatigue and damage tolerance, structural analysis, testing, and qualification. On the AW189 project, he led the analysis and qualification activities from preliminary design through to certification.



For the last year, David has been the Structures Lead Engineer for the Next Generation Civil Tilt Rotor project. This is a collaborative research project, which is part of the European Union Clean Sky 2 programme. This project is to develop technologies to support a large tiltrotor aircraft and to demonstrate these on a test demonstrator aircraft.

Vehicle NVH Design & Development uUsing NVH Director
Malcolm Hardy, Principal Engineer Vehicle NVH at Jaguar Land Rover presents at the UK Altair Technology Conference 2019. With an increasing number of vehicle programmes, propulsion variants and body styles on a range of different vehicle architectures, it is increasingly challenging to ensure that control models are consistent to allow comparable CAE assessment.



This is essential to allow key engineering decisions to be made and becomes even more critical as Jaguar Land Rover develop Full Vehicle NVH Simulator models to enable subjective assessments and sign-off before a physical prototype is built. This leads to a requirement for a consistent and robust process, independent of the user, for assembling models and applying load cases across all programmes, aligned to demanding gateway timing.



In response to these requirements, Jaguar Land Rover are integrating Altair’s NVH Director into their Vehicle NVH development process. This has enabled the formalisation of model requirements and processes, ensuring that vehicle models are built consistently with standardised load cases and post processing. This allows the reporting of status more efficiently than previously, allowing more time for engineering development and the future ability to stochastically assess the robustness of engineering solutions and likelihood of error states.

Build, Verify & Optimise a Body-in-White Structure in a Working Day
Dr. Tayeb Zeguer, Group Tech Leader APD, Advanced CAE at Jaguar Land Rover presents at the UK Altair Technology Conference 2019. A Design exploration, loadpath studies, material selection and heavy usage of Optimisation are key to the development of a lightweight and efficient Body-In-White (BIW) structure. Nevertheless, the fast pace of vehicle development makes it a challenge to do such CAE work fast enough to drive the design and the decision making. This is why the C2 phase of the Altair C123 process is the ultimate weapon to drive the design in a fast and reliable manner. By using low fidelity models, the C2 phase allows quick iterations, large DOEs and complex optimisation studies to be executed within minutes and have a large impact on design and strategy decisions.



The natural starting point for the C2 process is the supply of a C1 layout model with associated CAD packaging data. However, another entry point is the availability of a high fidelity finite element model from a previous program. The initial activity is the rapid development of a C2 model which can generate a reliable and good quality results. This is the reason why Altair has developed various tools to ease the process of creating “ready to optimise” low fidelity models. Thanks to a highly automated series of tools combined with highly advanced optimisation technology, it is now possible to build, verify and optimise a BIW model for Noise, Vibration and Harshness (NVH) and Crash in a single working day.

Transforming Design & Decision Making by Applying Simulation Throughout Product Lifecycles
Seen here presenting at the UK Altair Technology Conference 2019, James R. Scapa brings more than 35 years of engineering experience to his dual role of Chairman and CEO of Altair Engineering, Inc., a title he has held since the company’s inception. In 1985, Mr. Scapa and two partners founded a small consulting activity in the new field of computer-aided-engineering. Today, the company employs over 2,000 employees with more than 82 offices throughout 25 countries.



Through Mr. Scapa’s leadership, the company is now a leading global provider of simulation technology and engineering services that empower client innovation and decision-making. With over 5,000 clients, Altair serves the automotive, aerospace, government and defense, heavy equipment industry sectors as well as the consumer products, shipbuilding, energy, electronics, life sciences, and architecture engineering and construction markets. Prior to establishing Altair, Scapa served as an engineering consultant to the automotive industry, beginning his career with Ford Motor Company in 1978. Scapa holds a Bachelor’s degree in Mechanical Engineering from Columbia University and a Master of Business Administration from the University of Michigan.

Design the Future e-Mobility
This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

Analysis of Static Eccentricity Faults in Double Stator Single Rotor Axial Flux Surface-mounted Permanent Magnet Motors
This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

Shielding Benchmark: Static Shielding and Eddy Current Shielding
This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

Flux & Flux Motor: A Preview from the Inside
This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

Switched Reluctance Motor (SRM) Multiphysics Simulation
This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

Slotless-Halbach Lightweight Electric Machines and Unconventional Multi Layer Winding
This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

Using Workflow Automation Tools for the Multi-physics Optimization of Traction Motors
This presentation was given on April 11, 2019 at ATCx Electromechanical Applications in Troy, MI.

Deployment of HyperWorks for Undergraduate Teaching (Mechanical) by Christophe Bastien | Coventry University
Positive destinations of leavers is a key metric for any University. A major aspect in achieving this metric is to successfully develop industry ready graduates, possessing a well-proportioned balance between hands-on simulation/software experience, practical skills and a robust theoretical foundation.

Based on Christophe's personal experiences of teaching Finite Element Analysis (FEA) and optimisation techniques to mechanical, automotive and aerospace engineering students, this presentation will discuss some of these metrics in greater detail, including:

- The importance of collaboration between academia, industry and software suppliers.
- Strategies for software implementation into undergraduate teaching.
- Examples of success and perhaps some of lesser successful implementation.
- The changing landscape of student expectations and previous experience.
- Continuation into taught and research postgraduate studies

The Altair Motion Solution
This presentation was given at the 2019 ATCx Multibody & System Simulation conference at the Altair Headquarters in Troy, MI.

Altair Inspire Motion - An Overview 
This presentation was given at the 2019 ATCx Multibody & System Simulation conference at the Altair Headquarters in Troy, MI.

Vehicle Modeling in MotionView and MotionSolve 
This presentation was given at the 2019 ATCx Multibody & System Simulation conference at the Altair Headquarters in Troy, MI.

Page: 1  2   3  

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe