| Login

Resource Library

Keyword
GO
Categories










Industries














1349 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Design for High Performance Recreational Products
Pankaj Dubey, Country Head and Managing Director at Polaris India, presents at Converge 2016 in Bangalore, India.

Pre and Post-Processing for Aerospace
This webinar gives an overview of HyperWorks’ aerospace solution for model-setup, composites modeling and efficient reporting. The popular matrix browser for easy data extraction and advanced post-processing is also covered.

FEKO Webinar: Design of a Two Port Dual-Polarized Trefoil Torus Knot Antenna using Characteristic Mode Analysis
r S Vinoth Kumar from Indian Institute of Technology Kanpur received an honorable mention in the 2017 Competition for his entry.

Knots find interesting applications in various field of electromagnetics. In Mr Kumar’s work a dual-polarized knot antenna is designed and optimized completely using features of FEKO. The proposed structure is fabricated and its performances are compared with the simulation results obtained from FEKO.

FEKO Webinar: Wideband MIMO Handset Antennas Based on Theory of Characteristic Modes
Ms Ke Li from Xidian University, China received the prestigious title of winner in the 2017 competition.

This winning entry covers a dual multiple-input, multiple-output (MIMO) antenna design for a smart phone operating in the LTE 13, GSM850 and GSM900 bands.

Designing Optimized Aluminum Castings with Fatigue Life Considerations
Andras Tanos, R&D Engineer at FemAlk ZRT, talks about how they have used Altair solutions for topology optimization of an engine part.

Innovate Philippines' AEC Landscape with Inspire
Tony Pimentel from Pimentel & Associates is innovating the Philippines Architecture, Engineering and Construction landscape with Inspire.

Innovative Use of Composites for Organic Architecture
In this interview recorded at JEC World 2018, Atanas Zhelev, Chief Architect and co-founder at Digital Architects Ltd., talks about the innovative use of composites for organic architecture.

Composites offer designers the ability to create a material and engineer its properties to resist particular load cases and environments. Such infinite possibilities can be daunting and a big step away from the more conventional way of working with a material having a known set of characteristics.

It is here that architects and structural engineers can be aided by Altair’s software, such as ESAComp, now available as a standalone product in Altair HyperWorks advanced simulation and optimization software suite, to produce efficient, stable and durable composite structures.

Alpla Develops Innovative Packaging Solutions with HyperWorks
Alpla develops and produces packaging solutions for consumer goods. Christoph Plankel, Head of Modeling and Simulation Department at Alphla, discusses how they have used simulation to produce lighter packaging without compromising on performance.

Optimization of Photovoltaic (PV) Mounting Structures – Savings on Material and Cost
Photovoltaic specialist Thesan, a subsidiary of global manufacturer Savio S.p.A, manufactures, and distributes mounting structures, consisting of a so-called Purlin, a Rafter, and a Pole (and Hat), designed to withstand potentially occurring loads from wind and snow, as well as dead loads. Drawing on the Savio Group’s competence in the design of steel and aluminum structures and thanks to a team of over 40 engineers, they are to satisfy every construction requirement of photovoltaic power plants at all altitude and climatic conditions, using any specific fixation requirements. For a recent project requiring optimization of a mounting structure of a medium sized PV field with a power of 5 MW, engineers used HyperWorks. The benefits included reduced material usage, reduced manufacturing and transportation costs and improved competitiveness for Thesan.

Altair MDO Director Datasheet
A multi-disciplinary optimization (MDO) approach allows you to explore all design requirements simultaneously and achieve lighter products, faster. Until now, enabling this process on live vehicle programs has been a challenge. Altair's MDO Director is a novel set of software tools that provides a process to rapidly set up, execute, post-process and explore the design of MDO problems.

ESAComp for Architecture
Composites offer designers the ability to create a material and engineer its properties to resist particular load cases and environments. Such infinite possibilities can be daunting and a big step away from the more conventional way of working with a material having a known set of characteristics. It is here that architects and designers can be aided by Altair’s software such as ESAComp to produce efficient, stable and durable composite structures.

Increase Profit Margins Through Simulation Driven Design
In this webinar we will show how computer simulation is being used to help packaging companies predict design behavior and response, and prevent product failure when subjected to various conditions. Many companies typically think they do not have the time, resources, or funds to implement simulation into their product development. On the contrary, the well-documented ROI secured from implementing successful simulation strategies can help drastically increase profit margins.

This webinar was recorded on April 26, 2018.

Altair SimLab Datasheet
Altair SimLab is a process oriented, feature based finite element modeling software that allows you to quickly and accurately simulate engineering behavior of complex assemblies. SimLab automates simulation-modeling tasks to reduce human errors and time spent manually creating finite element models and interpreting results. SimLab is not a traditional off-the-shelf pre- and post-processing software, but a vertical application development platform for capturing and automating simulation processes.

Altair Flux Datasheet
Capitalizing on thirty-five years of innovation in the global context of design optimization and time-to-market reduction, Flux finite element software provides solutions to low-frequency electromagnetic and thermal simulation problems. Flux includes an open and user-friendly interface that is easily coupled with other Altair software to address multiphysics problems for a variety of systems in 2D, 3D and Skew modeling situations.

Electric Field Simulation with Flux
Electric Field Simulation Application Sheet

Altair FluxMotor Datasheet
Altair FluxMotor is a flexible open software tool dedicated to the pre-design of electric rotating machines. It enables the user to build a machine from standard or customized parts, add windings and materials to run a selection of tests and compare results. Based on modern technology, the standalone platform offers fast and accurate computations. When necessary, connection with Altair Flux™ finite element software enables more advanced studies, taking into account more complex phenomenon.

Electromagnetic Compatibility
To meet time-to-market requirements and comply with product specifications, the virtual prototyping of EMC phenomena is widely performed in the early design stages. Altair provides complete simulation
solutions to address these challenges for low and middle frequencies.

Power Cables and Busbars
Power cables, power bars and busbars are used to distribute and
transmit electrical energy through the grid. Their design must comply
with several electromagnetic and thermal constraints to guarantee high
performance, safety and efficiency. Altair offers the innovative Flux
software to answer these challenges.

Flux Webinar : Designing Efficient and Sustainable Energy Generation Equipment Thanks to Simulation
From conventional to renewable energy and large-scale power plants to in-house systems, energy generation has to be efficient and sustainable to supply the grid and support different needs.



Flux Webinar : Designing Reliable MV & HV Power Grid Equipment
Aging transmission infrastructure has to be modernized to deliver electricity more reliably and efficiently. Asset owners of the ecosystem such as manufacturers, service providers, and government offices have to consider the multiple challenges around energy transmission.



Flux Webinar : Safe and Flexible Distribution : Smart Grid Equipment Design
From power plants that regulate their power output, to the coordination of centralized and decentralized energy supplies and fluctuations in power needs - Smart Grid is gaining importance and is expected to provide on-demand management.



FEKO Webinar : New Features in FEKO 2018, including WinProp
In this webinar we will be presenting the exciting features in the new FEKO 2018 release.

Rapidly Exploring Electric Vehicle Architectures with C123
To overcome the challenges of developing a vehicle architecture shared across a range of electrical vehicles, National Electric Vehicle Sweden (NEVS) leveraged Altair’s unique three stage concept development process, C123 using a combination of optimization technologies, design processes and engineering expertise.

Minimising Interior Noise in Electric Vehicles
National Electric Vehicle Sweden (NEVS) leverages use of the Altair Squeak and Rattle Director in identifying and minimising risks of interior noise in electric vehicles.

FEKO Lua Script: ISAR Image Processing
The script computes and displays an inverse synthetic aperture radar (ISAR) image from backscattered radar cross section (RCS) data over frequency and angle. Windowing functions, resampling and extracting the local maxima positions to file are supported. The script requires a far field RCS request or far field RCS data imported from a file containing far field data (a .ffe file). Data imported from a .ffe file must be added manually to a 3D view.

The Design Revolution Offered by Combining Additive Manufacturing with Simulation Driven Design
Topology optimization is a computer based calculation procedure which can design mechanically stressed component structures in such a way that the highest possible rigidity can be achieved with minimal material usage. Only those parts of a component which are essential for the required flux of force and necessary stability are generated. This results in complex structures which can only be built partially or not at all using conventional production processes. At this point the advantages of additive manufacturing come into focus.

Flux Webinar: Accelerate your Design Process with Flux - Dealing with Complex 3D CAD Models
Flux is now fully part of HyperWorks and thanks to our flexible HyperWorks Units, users are now able to access even more tools that will help you to save time in your designs and enable powerful simulations. Flux embeds its own pre-preprocessing tools but designers sometimes need to deal with complex 3D geometries generated by their CAD team.

Simulation Driven Design for Efficient Electric Machines - What's New in FluxMotor 2018
The electric motor design process can be long and tedious. Modern design tools enables designers to quickly evaluate and compare machine techinical-economic potential. Discover how FluxMotor can radically change the way machines are designed, through each stage and be able to use standard or customized parts, add windings easily and quickly attribute materials before computing its performance.

Design Optimization with Feko and HyperStudy
See how easy it is to use the Optimization SDK in other applications.

Design of Interior Permanent Magnet Machines for Traction Application using Flux Modules
Altair’s low-frequency electromagnetic and thermal software, Flux™, offers a complete range of modeling tools able to take into account model specifications and streamline the design process.

Capitalizing on 36 years of innovation in the global context of design optimization and time-to-market reduction, our solution suite is built to assist you. The ATCx Flux™ seminar is an excellent opportunity to discover the latest developments in this best-in-class software. Industry experts will present the latest capabilities and enhancements of Flux™ 2018 - providing a comprehensive view of methodology used for the analysis, design and optimization of modern applications.

Presentation recorded in Troy, MI during ATCx Flux 2018 on March 14, 2018.

Design of an Axial Flux Machine: Simulation and Challenges
Altair’s low-frequency electromagnetic and thermal software, Flux™, offers a complete range of modeling tools able to take into account model specifications and streamline the design process.

Capitalizing on 36 years of innovation in the global context of design optimization and time-to-market reduction, our solution suite is built to assist you. The ATCx Flux™ seminar is an excellent opportunity to discover the latest developments in this best-in-class software. Industry experts will present the latest capabilities and enhancements of Flux™ 2018 - providing a comprehensive view of methodology used for the analysis, design and optimization of modern applications.

Presentation recorded in Troy, MI during ATCx Flux 2018 on March 14, 2018.


Modeling the Induction Heating of Carbon Fiber Reinforced Thermoplastic
Altair’s low-frequency electromagnetic and thermal software, Flux™, offers a complete range of modeling tools able to take into account model specifications and streamline the design process.

Capitalizing on 36 years of innovation in the global context of design optimization and time-to-market reduction, our solution suite is built to assist you. The ATCx Flux™ seminar is an excellent opportunity to discover the latest developments in this best-in-class software. Industry experts will present the latest capabilities and enhancements of Flux™ 2018 - providing a comprehensive view of methodology used for the analysis, design and optimization of modern applications.

Presentation recorded in Troy, MI during ATCx Flux 2018 on March 14, 2018.

Coupling Flux with OptiStruct for Acoustic Analysis
Altair’s low-frequency electromagnetic and thermal software, Flux™, offers a complete range of modeling tools able to take into account model specifications and streamline the design process.

Capitalizing on 36 years of innovation in the global context of design optimization and time-to-market reduction, our solution suite is built to assist you. The ATCx Flux™ seminar is an excellent opportunity to discover the latest developments in this best-in-class software. Industry experts will present the latest capabilities and enhancements of Flux™ 2018 - providing a comprehensive view of methodology used for the analysis, design and optimization of modern applications.

Presentation recorded in Troy, MI during ATCx Flux 2018 on March 14, 2018.

Efficient Multidisciplinary Modeling of a Washing Machine Motor Duty Cycle
This presentation will take you step-by-step through the electromagnetic and thermal analysis of a washing machine during a full wash cycle.

By utilizing Flux and Activate, the designer was able to evaluate the thermal image of the motor, faster at a limited cost and in a limited time.

You will hear from the entire team responsible for the success of this project. From project start: outlining the goal of the project and establishing the workflow, to the evaluation of the motor performances, the computation of the losses for the different parts of the cycle, to project end: completing the thermal computation. You will observe the Activate 1D thermal simulation and the flow of data from Flux to Activate. You will get a rare 360-degree view of what was executed as actual measurements are compared to the results obtained using our elegant software solutions.

Presentation recorded in Troy, MI during ATCx Flux 2018 on March 14, 2018.

Efficient Control of AC Machines using Model-Based Development
This webinar, hosted by IEEE, focuses on Motor Control using Embed

Use of Composites Materials in Architecture
Atanas Zhelev and Mariya Korolova (Digital Architects - Vienna, Austria) and Daisuke Hirose (Archicomplex - Tokyo, Japan) made a design proposal for the Architecture competition for a bid at the Varna Library in Bulgaria. Their proposal features a composite of birch wood and carbon fiber laminate which got structurally designed with ESAComp. This video gives a short introduction to the project.

Sella Chair - Form Follows Performance
Short video describing the design and production of a design chair by Architect Atanas Zhelev (Digital Architects, Vienna, Austria). This design piece demonstrates the feasibility of his Active Grid Monocoque System (AGM) he uses in his work for highly curved, wide spun architecture. The analysis has been done with Altair products, foremost ESAComp and OptiStruct.

The Digitalization of Biomimicry Design from the Ocean
Sebastian Möller, Projektleiter at ELiSE Alfred Wegener Institut, presents at Converge 2017 in Essen, Germany.

Development of a New Lightweight Aluminum Profile for a Glass Balustrade
Gabriele Romagnoli, Head of Structural Engineering at Farone, presents at Converge 2017 in Essen, Germany.

A Tooling Revolution for Plastic Injection Molding
Stefan de Groot, Technologist Additive Manufacturing at PROTIQ, presents at Converge 2017 in Essen, Germany

Simulation Driven Design in the Cloud
Chad Zamler, Marketing Director of solidThinking, presents at Converge 2017 in Essen, Germany.

Bend-It – Rethinking Customized Orthopaedic Devices Using Additive Manufacturing
Dustin Ahrendt and Felix Schmitt from Technische Universitat Dresden present at Converge 2017 in Essen, Germany.

Design Research Experiences at ZH CoDe
Filippo Nasetti, Senior Associate at Zaha Hadid, presents at Converge 2017 in Essen, Germany.

Master Class: How to Design for Additive Manufacturing
This Master Class held at Converge 2017 in Essen Germany, presents the making of the 3iPRINT Project, which was a joint effort from csi entwicklungstechnik, APWORKS and EOS.

Design for the Future: 5 Trends You Need to Know
Christine Outram, Chief Product Officer at Veritas Prep, presents at Converge 2017 in Los Angeles, California.

Build a Rocket
Tim Morton, Director of Industrial Design at Newell Brands, presents at Converge 2017 in Los Angeles, California.

Taming Smart Materials to Behave
Doris Sung, Founder of DOSU Studio Architecture, presents at Converge 2017 in Los Angeles, California.

Additive Manufacturing Design
Jason Lopes, Production Development Engineer at Carbon, presents at Converge 2017 in Los Angeles, California.

Towards Real-time Topology Optimization
Hod Lipson, Professor of Engineering and Data Science at Columbia University, presents at Converge 2017 in Los Angeles, California.

High Performance, Dynamism and Autonomy for Humans
Greg Lynn, Principal at FORM, presents at Converge 2017 in Los Angeles, California.

Mega Data, Mega Structure, Mega City
Michael Peng, Technical Director and Senior Associate at Gensler, presents at Converge 2017 in Los Angeles, California.

Development of a New Lightweight Aluminum Profile for a Glass Balustrade
The design of architectural components such as a balustrade can be challenging, since the design does not only have to look good, it also has to meet several safety requirements and standards. In addition, all designs have to be developed within the shortest time possible. To meet these challenges the engineers, architects and designers at Faraone are always looking for solutions that can reduce their design and testing cycles.

What Can We Learn from Nature for Modern Architecture Structures?
Eric Rusinol, an Architect from The Sagrada Família Foundation, gives us some insight into the project to finish Antoni Gaudí's iconic Cathedral in Barcelona, touching on the teams use of optimization and concept generations technologies from Altair.

Multi-physics Electric Motor Optimization for Noise Reduction
In an electric machine, the torque is generated by electromagnetic forces which also create some parasitic vibrations of the stator. These vibrations excite the mechanical structure on which the motor is fixed and generate sound. When designing the electric machine, this aspect has to be taken into account from the start since it depends on the harmonic content of the currents that feed the machine, on the shapes of the rotor and stator, and on the interaction of the electric frequencies with the natural mechanical modes of the structure.
To simulate this phenomenon, a coupling between electromagnetic calculations and vibration analysis has to be set-up. Some optimization procedure can also be added in order to reduce the noise.
In what follows, it is shown how Altair HyperWorks suite; specifically FluxTM, OptiStruct®, HyperMesh® and HyperStudy® products have been successfully used to perform a multi-physics optimization for noise reduction in a fuel pump permanent magnet motor.

Thermal Analysis of Electrical Equipment A review and comparison of different methods
Nowadays, it is more and more difficult to design electro-technique devices without having a look at thermal stress. In more and more applications (more electric vehicles, more electric aircrafts, …) designers need to reduce weight, cost, increase efficiency, and keep the same security factor. One possibility is to increase current for the same device, needing to check how to draw away the heat. This is why the classical approximations need to be cross checked with complementary analysis. These new tools have to be rapid and accurate in order to run parametric and even optimization analysis. There is also a need for fast model in order to check robustness versus driving cycles. The goal in this article is to review rapidly the different methods available, depending on the accuracy required and the solving speed.
The method includes equivalent thermal circuits, Finite elements methods and CFD analysis.


How to Efficiently Design Power Transformers
Since approximately 40% of grid losses are dissipated from power transformers, there is now a great need to analyse these important components of the electrical network. Flux 2D / 3D plays a key role in those investigations. Nowadays every aspect in the design can affect the efficiency of the power transformer: global losses but also accurate local quantities. Indeed, losses in the windings or skin effect are very difficult to estimate with traditional analytical methods. Flux 2D / 3D Finite Element analysis has become an essential tool to consider all aspects of a power transformer and optimise its behavior. Some losses are still very difficult to measure experimentally and require the following methods of simulation to be evaluated.
This article illustrates different tests in steady state and transient studies to characterise a power transformer, determine an equivalent circuit and design it to handle transient electrical and mechanical constraints. It also shows the thermal simulations that can complete the whole design of a power transformer.

Altair and Ziegler Instruments Combine Experience and Technologies to Identify and Eliminate Squeak and Rattle Issues
Altair has partnered with Ziegler-Instruments to enhance its Squeak and Rattle Director (SnRD), making it the most advanced and comprehensive solution on the market to predict and eradicate squeak and rattle phenomena in vehicles, aircraft and other products sensitive to Noise, Vibration and Harshness (NVH). The addition of Ziegler-Instruments’ PEM material database gives Altair’s SnRD clients access to the results for over 11,000 individual stick and slip phenomena for different materials pairs.

In this video, Patrick Schimmelbauer and Jens Herting of Ziegler Instruments give an overview of the partnership and what it means to companies needing to address squeak and rattle issues.

ESAComp-HyperWorks Interface Recommended Workflows
The use of the ESAComp-HyperWorks interface for enhanced post-processing of laminated composite structures is introduced.

ESAComp for Composite Pressure Vessels
ESAComp composite pressure vessel (CPV) analysis provides fast and accurate analysis of CPVs using shell or solid elements. The fiber paths computed by a filament winding simulation software are used as the basis of the analysis.

No more Gone with the Wind – Pedestrian Comfort Improvements on Quinta Torre with AcuSolve Computational Fluid Dynamics
Officially known as the Caleido project, the Fifth Tower in Madrid is owned by Inmobiliaria Espacio, a company that, among other services, deals with infrastructure and construction for all types of buildings.



Developing More Accurate and Reliable Vehicle Component Models in Less Time with Software Automation at Changan Automobile
Pre-processing vehicle models is time consuming and complex, with many opportunities for error if done manually. Altair build a custom software solution to automate most of the pre-processing tasks.

Altair Weld Certification Director Datasheet
Altair's Weld Certification Director (WCD) is a combination of a base software with customer specific additions and integrated services that allows engineers to accelerate the time taken to identify and analyze the performance of weld lines against mechanical requirements.

Pioneering Real Wireless Power Delivery™ at Ossia Inc.: FEKO in the Simulation Process
Ossia’s patented wireless power Cota® technology is delivered much like Wi-Fi, is inherently safe, and provides real wireless power through the air and over a distance, even while the
device is in motion. Using FEKO® for simulations to demonstrate that the SAR limit for COTA technology use for wireless power charging is within the FCC mandated limit of 1.6 watts per kilogram.

Real-Time Foundation Monitoring for Omnifor
In the western part of the Netherlands, the soil has insufficient bearing capacity to allow for the construction of buildings and houses. To overcome this issue, buildings in this area have been built on timber pile foundations. These foundations have to be fully submerged in water to avoid pile deterioration from rotting and fungi. Property owners wanted a way to monitor the structural condition of their timber pile foundations. Omnifor teamed up with Altair SmartCore and created a platform for structural health monitoring to track any signs of deterioration or shifting of the foundation. Data is collected at a specific rate to track the evolution of the deterioration along with an estimate of how long the property owner has until repairs are necessary.


Altair Weight Analytics Datasheet
Altair's Weight Analytics (WA) solution manages the entire Weight and Balance (W&B) process empowering engineering and management teams to control and ensure W&B attributes meet program requirements. Deployed as a common weight management tool across the enterprise, WA enables faster and more accurate decision-making with on-demand access to visualize, analyze and predict W&B at any point in time during the entire Product Lifecycle (PLC).

Altair Geomechanics Director Datasheet
Altair's Geomechanics Director (GeoD) allows engineers and scientists, especially in the Rock Mechanics and Geology groups at Oil and Gas companies, to build finite element models from subsurface geology quickly and efficiently.

Altair Squeak and Rattle Director Datasheet
Altair's Squeak and Rattle Director (SnRD) is a novel set of software automations to rapidly identify and analyze design alternatives to eliminate the root causes of squeak and rattle (S&R) in assemblies. Tailored to be deeply integrated within your environment and processes, SnRD offers a complete set of capabilities to streamline the entire S&R simulation workflow process from model creation to results visualization.

Originating a safe Fun Utility Vehicle (FUV)
The challenge in the development of Arcimoto’s SRK Generation 8; an all-electric, multi-purpose/utility commuter vehicle, included creation of an optimized platform that offers
3-wheeled stability, a space frame enclosure for protection, and a rear swing arm that handles the load requirements and also follows the visual design of the vehicle. HyperMesh® provided an environment for rapid model generation allowing Arcimoto to answer queries by helping them perform the analysis in OptiStruct® in an easy, time efficient manner. Using RADIOSS® for the physics helped them achieve repeatable and accurate results, reduce simulation cycle times and allow for evaluating multiple design scenarios thus enabling better decisions.


Altair ultraFluidX Datasheet
Altair ultraFluidX is a simulation tool for ultra-fast prediction of the aerodynamic properties of passenger and heavy-duty vehicles as well as for motorsport applications. Its cutting-edge technology is optimized for GPUs to deliver unbeatable performance and to allow for overnight simulations even of complex cases on a single server.


Using HyperWorks® to Optimize Structural Strength for Argon 18 High-performance Bikes
Argon 18 recently partnered with the ÉTS Research Chair on Engineering of Processing, Materials and Structures for Additive Manufacturing to manufacture a new track bike for Lasse Norman Hansen, one of the athletes competing for the Danish team in track cycling at the 2016 Rio Olympic Games. Their aim was to develop a bike that was stiffer, highly integrated, more aerodynamic, providing greater efficiency. An important aspect of the project was the development of a new aluminum stem to be used by Mr. Hansen in the Flying Lap event which is achieved by the fastest lap from the moving start. Altair solutions included OptiStruct for structural analysis, AcuSolve® for CFD, and Virtual Wind Tunnel.

Thermal Analysis of Electrical Equipment A review and comparison of different methods
Thermal Analysis of Electrical Equipment A review and comparison of different methods
- Equivalent circuit parameters with Activate
- Flux magneto-thermal FEA
- Flux FEA coupled to AcuSolve CFD

OptiStruct® Makes Life-form Inspired Table a Reality for IL Hoon Roh
Inspired by zooplankton Radiolaria, artist and architect IL Hoon Roh began creating series of objects known as “Radiolara Experiment” which, through extensive experimentation and collaboration with Altair, ultimately led to the creation of the sophisticated Table Ex-08.

Sujan CooperStandard Achieves Lightweighting and Performance Targets with Altair
Sujan CooperStandard manufactures (anti-vibration) NVH products for leading automotive companies. Currently, the automotive industry is under extreme pressure because of environmental norms and has to adhere to stringent government policies related to pollution control and one of the simplest ways to address these is to optimize designs and reduce weight of products and components. They began using Altair HyperWorks on the on the recommendation of their joint venture partner CooperStandard. The team decided to improvise design of their Torsion Vibration Damper using Altair solutions like solidThinking Inspire to optimize designs of the brackets and OptiStruct for structural integrity of the designs. Altair solutions have helped Sujan CooperStandard get their product designs right the first time and consistently meet their time, cost and quality targets.

Realizing the Digital Twin
This webinar will highlight the benefits of integrating Altair’s HyperWorks and Carriots software platforms for realizing Digital Twins.These products combined offer a tight integration between the essential parts of a digital twin process: device management, data collection, analytics and simulation-driven design. A case study on condition monitoring and predictive maintenance will be shown to demonstrate the process.

Webinar: Structural and Thermal Coupling with Electromagnetic Systems
Electromagnetic phenomenon may induce undesired effects such as heat or vibrations. To predict and correct them by simulation, it is necessary to couple all phenomenon. Altair HyperWorks software suite is a perfect solution for this and in this webinar, two use cases will be demonstrated, where Flux is coupled with OptiStruct and AcuSolve.

Innovative Drone Propulsion Design using Model-Based Development
To assist Kappa Electronics’ customer with controlling the motor for a new drone design, Altair’s solidThinking Embed was used for high speed simulation of motor electronics and control dynamics to develop a novel method of sensorless field-oriented control.

Design of Permanent Magnet Axial Flux High Power Wind Turbines Generators (MW range)
Design of Permanent Magnet Axial Flux High Power Wind Turbines Generators (MW range)

Hydrogenerators Finite Element Modeling with Flux
Hydrogenerators Finite Element Modeling with FluxTM
This article mainly focusses on the electrical engineering aspects of the design. Hydrogenerators parameters extraction and dynamical behavior prediction can be easily determined with a two-dimensional finite element modeling.

Addressing Design Development Challenges Through Simulation Driven Platform
Automotive suppliers are facing many challenges in having in-house simulation capabilities compared to that of OEM’s. One of the ways to overcome these challenges is to invest in simulation technologies that require an affordable initial investment, the ownership cost of which is low, the codes are reliable & proven, and the suite of tools provide suppliers access to a broad range of solvers (a true multi-physics environment) helping them pick and choose the solvers as per their simulation requirements. In the early stage of in-house simulation implementation at Endurance Technologies, HyperWorks was being adopted primarily for pre and post processing due to its extraordinary FE modeling solutions. With constant support, Altair team has helped Endurance in exploring and implementing various HyperWorks solvers at Endurance Technologies.

Modelling Insulating Parts in MV HV Equipment with Flux
Modelling Insulating Parts in MV/HV Equipment enables to
- To predict and avoid dielectric breakdown
- To compute and minimize electrical stress
HVDC lines Lightning strikes
- To decrease the oversizing


Altair Aerospace: Bird Strike and Other Nonlinear Transient Analyses
This webinar covers bird strike analysis on a wing, starting out with model setup, going over the impactor management and ending in the analysis of the results. Another topic to be discussed is the forming simulation of a composite rib and result mapping.

Key Success Factors to Realize Your Internet of Things Vision
Listen to our guest speaker, Forrester Principal Analyst Martha Bennett, as she discusses insights and researched on IoT.

Altair Aerospace: Design and Optimization of a Radome
This 25-minute webinar covers the material characterization and optimization of a radar dome (radome) build out of carbon and fiberglass. Also to be discussed is the design and optimization of a radar antenna and the simulation of a radar integrated behind the radome and wing structure.

Smart City with Pozuelo de Alarcon
The citizens of Pozuelo de Alarcón in Spain wanted a cleaner and more efficient city. The goals were to protect the environment, decrease energy consumption, reduce CO2 emissions, and control expenses.The city council used SmartCore platform to realize its digital transformation.

Altair Aerospace: Fail-safe and Multiphysics Optimization
This webinar covers the complete fail-safe optimization process of a wing rib starting with the search of a new and more efficient design to the calculation of optimum dimensions. The replacement of a metallic fitting by an organic 3D printed version, while increasing performances and decreasing mass reduction is discussed as well. HyperStudy has also been used to perform multi-disciplinary studies throughout the process.

Webinar: Applications for Thermal and Fluid Coupling
Altair’s AcuSolve CFD solver is capable of simulating complex multiphysics phenomenon including Heat Transfer-CFD coupling. In this webinar, two use cases are presented, using two very different calculation approaches.



Implementing your IoT Strategy
This webinar will showcase how to take advantage of Carriots™ end-to-end Internet of Things (IoT) platform designed for today’s industry needs and tomorrow’s innovations. You will learn about this smart Platform as a Service (PaaS) designed for machine to machine (M2M) and digital twin projects.

Webinar: HyperWorks for FSI Simulations
Altair’s HyperWorks software suite offers a wide variety of solvers able to simulate complex physical phenomenon, including multiphysics. Therefore, complex FSI applications can be solved, such as ditching or aeroelasticity, as will be shown in the two use cases presented in this webinar.

The Digital Twin Gateway: Simulation in the age of IoT and industry4.0
The data collected from IoT systems creates an opportunity for engineers to improve their systems and designs.

IoT development platforms, such as Altair’s Carriots, help engineers onboard these systems and designs into an IoT ecosystem.

In this webinar and product demo, you will learn:

IoT use cases from various industries
Data analytics that improve how you and your customers interact with your products
Key Carriots features to connect your devices and systems to the IoT

OptiStruct for Structural Analysis: Not Just for Optimizations Anymore
Reprint of Engineering.com article on OptiStruct as a structural analysis tool with built-in optimization capabilities

Altair Aerospace: Design a Flap Mechanism with Multibody Dynamics
This short webinar will discuss coupling of aerodynamics loading, structures vibration, mechanisms deployment and hydraulics actuation in the simulation of a high lift device. This session also includes the simulation of structure loads and actuation efficiency during flight maneuvers. A fatigue analysis ensures the longevity of the new design.

Designing Smart Connected Products and Wireless Networks for IoT
This webinar will explain and show through real use cases how Altair HyperWorks simulation platform and solidThinking design software solutions are helping companies to design and optimize the connectivity of innovative products going from small devices, through connected vehicles, and to wireless sensor networks for cases like industrial applications.

Better Indoor Climate thanks to Simulation and Optimization
Kampmann GmbH is an internationally leading specialist for heating, cooling, air-conditioning and integrated building automation. Within their virtual development process they are using the Altair HyperWorks® software suite, in particular AcuSolve®, the CFD solver; OptiStruct®, the suite's FE-solver and an optimization tool; and HyperMesh® for modeling and meshing tasks. For plant control design, Kampmann is currently considering solidThinking Activate®, a mapping software for control systems. Thanks to simulation, Kampmann engineers are now able to answer questions regarding the internal processes of the system, which are difficult, if not impossible, to study through physical testing.

Analysis of Grounding Performances of a Car Body Using FEM Shell Elements
In the automotive domain, the EMC phenomenon of the current return occurs over a wide frequency band due to the fact that the paths followed by the current are very different between the lowest frequencies (a few Hz) and medium frequencies(hundreds of kHz).

Checking Remanence Issues with New Hysteresis Model
Remanence is what is left when all current is removed, and there is still some flux density left in the iron core. This is often the case with a close path for flux density, especially in U or E shape devices. To get rid of this effect, it is sometimes useful to add a so-called remanent airgap. This paper explains what we have incorporated into Flux to model this effect due to hysteresis.

Cogging Torque Computation and Mesh for Non-radial Electrical Motors in Flux®
All electrical motor designers know that the computation of cogging torque is a tricky task, particularly in 3D. Indeed, the amplitude of this variable is almost the same as numerical noise. In most cases, conventional mesh methodology is not sufficient and specific methodology must be used. At CEDRAT, thanks to its experience, the application team has developed methodologies to successfully compute
cogging torque in most cases. This article presents a specific mesh methodology to compute cogging torque for 3D non-radial electrical motors.


Cogging Torque Computation and Meshing for Radial Electrical Motors in Flux®
All electrical motor designers know that the computation of cogging torque is a tricky task in 3D. Indeed, the amplitude of this quantity is almost the same as the numerical noise. In most cases, a classical meshing methodology is not sufficient and specific methodology must be used. At CEDRAT, the application team, thanks to its experience has developed methodologies to successfully compute cogging torque in most of cases. This article presents a specific meshing methodology to compute cogging torque for 2D and 3D radial electrical machine. It begins with some general recommendation concerning the definition of the geometry in order to facilitate the meshing operation. Then, it presents the specific meshing methodology applied to a 2D SPM motor and to a 3D IPM motor.

Comparative Study of Concentrated and Distributed Winding Using Flux®
The paper presents a comparative study of 3-phase permanent-magnet (PM) synchronous machines (PMSM) with concentrated and distributed windings. The purpose of this study is to identify the machine that gives the better electromagnetic performance (torque, efficiency, back electromotive force…). Two PMSM with concentrated and distributed windings having identical output power, stator and rotor outer diameter, airgap, axial length, are designed. Machine performance of the two machines is compared using finite element analysis (Flux 2D).

Eccentricities Faults in a Rotating Machine Analyzed with Flux®
In the present energy efficiency context of electrical machines, diagnosis of rotating machines is increasingly studied. Designers seek to include the on-line, non-invasive diagnosis and typical signatures of the rotating machines faults in the stator winding currents, torque, leakage magnetic field…etc. Among the rotating machine’s faults, 7 to 10% are located in the rotor and some of these faults are eccentricities. These faults generate electromagnetic torque oscillations: electromagnetic forces acting on the stator, particularly the stator winding, which can accelerate wear of its insulation. Friction between the stator and the rotor is not excluded; this can also have an adverse effect on the bearing.
In the literature we often find three types of eccentricities: static, dynamic and mixed. Our Flux 2D/3D/Skew finite element solution can be of considerable help to predict the typical signatures of eccentricities faults and the influence of these defects on the electromagnetic and vibro-acoustic
performances of these machines, a very differentiating feature of the software. The purpose of this article is to show the feasibility of the different eccentricities with Flux 2D/3D/Skew thanks to the
possibilities offered by mechanical sets.


Page: 1   2   3   4  5   6   7   8   9   10   11   12   13   14  

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe