| Login

Resource Library

Keyword
GO
Categories










Industries














109 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Guerrilla Gravity
For pioneering a new material application and technology without a road map, Guerrilla Gravity used Altair OptiStruct in the early design design phase. The result was the development of lightweight, high-performance bikes, that are 300% more impact resistant than other frames on the market that use traditional carbon fiber materials, at significant cost savings and shortened timelines.

E-motor Design using Multiphysics Optimization
Today, an e-motor cannot be developed just by looking at the motor as an isolated unit; tight requirements concerning the integration into both the complete electric or hybrid drivetrain system and perceived quality must be met. Multi-disciplinary and multiphysics optimization methodologies make it possible to design an e-motor for multiple, completely different design requirements simultaneously, thus avoiding a serial development strategy, where a larger number of design iterations are necessary to fulfill all requirements and unfavorable design compromises need to be accepted.



The project described in this paper is focused on multiphysics design of an e-motor for Porsche AG. Altair’s simulation-driven approach supports the development of e-motors using a series of optimization intensive phases building on each other. This technical paper offers insights on how the advanced drivetrain development team at Porsche AG, together with Altair, has approached the challenge of improving the total design balance in e-motor development.


Duratec
Czech company Duratec Ltd. develops handmade bike frames using both aluminium and composite materials. For a recent project at Duratec presenting the latest approach in development of carbon fiber optimization of the bike frame, Altair HyperWorks was used for model creation in Altair HyperMesh, optimized via the Altair OptiStruct code and evaluated in Altair HyperView in the development and optimization of a lightweight composite racing bike frame.

Griiip
Israeli motorsport company Griiip has designed a new, fast and professional race car that combines efficiency in racing with a competitive purchase price and low running costs, to make it more affordable. By harnessing the power of data, Griiip has created the first smart connected race car – the G1 – and with it, an entirely new racing series. Accessing the software via Altair's new Startup Program, Griiip engineers employ several products from the Altair HyperWorks™ suite, among these Altair Radioss™ for crash simulation, Altair OptiStruct™ for structural optimization, general FE analysis as well as Altair HyperMesh™ and Altair HyperView™ for pre- and post-processing tasks in the development of race cars.

Safran Seats
Zodiac Seats (now Safran Seats) designs, certifies and assembles innovative, customizable and high-added-value products. For optimizing seat ergonomics to reduce passenger discomfort, Zodiac Seats France (ZSFR) employ Altair HyperWorks to develop biomechanical models which help with optimization of the seat form and structure.

INTECH DMLS Achieves 27% Weight Reduction in 3D Printed Satellite Component using Altair Inspire™ and OptiStruct™
INTECH DMLS is playing the visionary role in the field of metal-based DMLS 3D printing in India since its inception in 2012. The company with this rich expertise in metallurgy and machining, established themselves rapidly as the leader of the Metal Additive Manufacturing industry in India. Sinteneering Innovations®, the company’s tagline signifies its commitment to innovation in manufacturing and marks the beginning of a new era in metal manufacturing.

Providing Designers Easy Access to Powerful Simulation Tools
Brompton Bicycle discuss the benefits they have seen from moving away from simulation in their CAD system to a more powerful and flexible system from Altair.

Optimisation of a Collapsible Economic Container “COLLAPSECON"
At the forefront of innovation at CEC Systems is the world’s first semi-automated Collapsible-Economic-Container. Achieving a 4:1 ratio, COLLAPSECON® enables 4 empty containers to be collapsed and combined to form a single container, improving operational efficiency, enhancing return on investment and reducing the impact on the environment. For the design for mass production and optimal operational use, the Altair HyperWorks Suite was leveraged to find solutions for weight reduction without increasing manufacturing costs. The newly engineered container is potentially 30% lighter than the original design, whilst reducing material requirements, increasing manufacturing efficiency, and reducing cost.

Museum of the 20th Century
For a competition launched for the Museum of the 20th Century, Zaha Hadid Architects re-invented a similarly radical approach by applying new advances in technology to generate structural and architectural expression. With Altair’s assistance, they created a plug-in for their design tool, enabling topology optimization. Altair HyperMesh was used for finite element preprocessing mesh generation, with Altair HyperView providing post-processing and visualization solutions. Structural analysis solver Altair OptiStruct provided advanced analysis and optimization algorithms.

Novum: University of Michigan Participates in Solar Car Challenges Around the World
See how Altair's Software is used to get University of Michigan's solar car, Novum, to the next level to compete in the World Solar Challenge in Australia and the American Solar Challenge - crossing an entire continent in both cases just on the power of the sun alone.

Optimization of Photovoltaic (PV) Mounting Structures – Savings on Material and Cost
Photovoltaic specialist Thesan, a subsidiary of global manufacturer Savio S.p.A, manufactures, and distributes mounting structures, consisting of a so-called Purlin, a Rafter, and a Pole (and Hat), designed to withstand potentially occurring loads from wind and snow, as well as dead loads. Drawing on the Savio Group’s competence in the design of steel and aluminum structures and thanks to a team of over 40 engineers, they are to satisfy every construction requirement of photovoltaic power plants at all altitude and climatic conditions, using any specific fixation requirements. For a recent project requiring optimization of a mounting structure of a medium sized PV field with a power of 5 MW, engineers used HyperWorks. The benefits included reduced material usage, reduced manufacturing and transportation costs and improved competitiveness for Thesan.

Development of a New Lightweight Aluminum Profile for a Glass Balustrade
The design of architectural components such as a balustrade can be challenging, since the design does not only have to look good, it also has to meet several safety requirements and standards. In addition, all designs have to be developed within the shortest time possible. To meet these challenges the engineers, architects and designers at Faraone are always looking for solutions that can reduce their design and testing cycles.

Better Indoor Climate thanks to Simulation and Optimization
Kampmann GmbH is an internationally leading specialist for heating, cooling, air-conditioning and integrated building automation. Within their virtual development process they are using the Altair HyperWorks® software suite, in particular AcuSolve®, the CFD solver; OptiStruct®, the suite's FE-solver and an optimization tool; and HyperMesh® for modeling and meshing tasks. For plant control design, Kampmann is currently considering solidThinking Activate®, a mapping software for control systems. Thanks to simulation, Kampmann engineers are now able to answer questions regarding the internal processes of the system, which are difficult, if not impossible, to study through physical testing.

Surrogate Models for Antenna Placement on Large Platforms
The RF Engineering group at the Institute of High Performance Computing (IHPC), develops advanced computational electromagnetics and multiphysics algorithms and tools, leveraging vast know-how in EMC for a wide range of applications. Typical challenges include electrically-large and multi-scale EM problems such as antenna placement on large platforms, and mutiphysics problems such as the electrical –thermal–mechanical analysis of composite materials. In a project that dealt with electrically large platforms, an efficient modelling tool was required to identify optimum antenna positions and minimize interference between various antennas. FEKO was used during the development process, helping to determine the design parameters of the surrogate models using its powerful optimization function.

MIT, Pune
A university team at MIT, Pune used topology optimization and additive manufacturing to develop two new designs for the Quad-rotor UAV drone that were lighter and stronger than previous designs.  

Less Interior Squeak and Rattle Noise Using a Simulation Driven Design Approach
In the development of new vehicles, the PSA Group aimed to detect Squeak and Rattle (S&R) problems before availability of physical testing. This led to a collaboration between PSA’s method development engineering team and Altair’s domain experts.

Subros Leverages Altair HyperWorks® to Build Optimized Product Designs While Reducing 60% Simulation Time and 40% Prototyping Costs
Subros is the leading manufacturer of thermal products for automotive applications in India and operates in technical collaboration with Denso. Being a major supplier of AC units to the predominant automotive segments and all classes of vehicles produced by global players in the country, it is very important for Subros to honor deadlines of product delivery with agreed benchmarks of quality. The Subros team has used Altair solutions such HyperMesh for FE modeling, RADIOSS and OptiStruct for structural analysis, AcuSolve for flow analysis, and solidThinking Inspire for Modal Analysis

Mando Softtech India Achieves Greater Simulation Accuracy with Altair HyperWorks®
As Manufacturers of Automotive Components such as Chassis and Brakes, Mando Softtech India has to ensure that they maintain highest performance and quality standards of the products they develop. Implementation of Altair HyperWorks solutions has helped them considerably reduce their product development time and costs, while augmenting product quality. Their overall development time was reduced by up to 30 to 40%.

Topology optimization and new manufacturing methods enable lightweight design in agricultural engineering
Amazone develops and produces innovative agricultural technology, enabling and supporting modern and economical arable farming methods. For the re-design of an originally welded suspension component as a casting part, solidThinking Inspire was used for topology optimization. The benefits included increased durability by a factor of 2.5 and an 8% reduction in weight.

Ryerson’s International Hyperloop Team
Ryerson's International Hyperloop Team utilized finite element analysis and topology optimization to redesign a metal additive manufactured motor bracket. PolyNURBS was used to make the design 3D print-friendly.

Wilson Golf/Driver vs. Driver
Altair’s work on Driver vs. Driver, Wilson Golf’s television competition that followed aspiring golf club designers in their journey to develop Wilson’s next club in production. Our industrial design team worked with each of the contestants to develop and model the designs in Evolve while our CFD experts helped them simulate and optimize the aerodynamics of the club in Virtual Wind Tunnel.

Wilson Golf
Wilson has a strong relationship with Altair, having worked alongside Altair ProductDesign on a number of successful projects in the past and valuing the broad range of simulation and design technologies available in the HyperWorks and solidThinking software
suites. Altair’s technical and industrial
design teams were selected to assist in the development of the show, working under the direction of Wilson Labs.

Simulation Speeds Roll Cage Design
Australian company relies on virtual tools to test the roll cage structures that keep motorsports drivers safe.

Faraone
Faraone accelerates the design approach for lighter and stiffer architectural components with premium topology optimization technology.

APWorks Light Rider: Optimization Process
First 3D-printed Motorcycle by APWorks (Airbus Group) called Lightrider. Altair's software OptiStruct was used for inspiration of the organic structure of the motorcycle.

  •  
CalsonicKansei North America
CKNA contacted Altair ProductDesign for training on the Squeak and Rattle Director, which led to more in-depth consultation on the squeak and rattle methodologies, ultimately saving the company time and money by helping them identify detrimental issues early on and by improving vehicle quality.

Lighter, farther, faster, greener: TUfast Eco team drives to success with HyperWorks
For the Shell Eco-marathon, an international contest for sustainable mobility, student teams from schools and universities all over the world design vehicles that are as energy-efficient as possible. After passing a technical check, the vehicles compete for energy efficiency. In this discipline the vehicles are evaluated for the vehicle’s reach per kWh. To compete in this category, a driver with a minimum weight of 50 kg has to drive a distance of 17.9 km in less than 43 minutes. The challenge for the TUfast Eco team was breaking the world record for efficient vehicles and participation in the Shell Eco-marathon. The Altair solution included topology optimization with HyperWorks.

Alstom
Alstom coupled topology optimization with additive manufacturing to explore the feasibility of alternate manufacturing to traditional casting. This resulted in a 70% weight reduction of its locomotive component.

LEIBER Group
LEIBER Group, which specializes in developing lightweight metal components, applied topology optimization to determine the ideal shape for a vehicle suspension beam, resulting in mass savings of over 50%

Triton Bikes
Triton Bikes utilized Altair Inspire to Increase performance, decrease the overall weight, and simplify manufacturability of a 3D printed custom bike rear yoke.

Benefits of the Symbiosis of Topology Optimization and Additive Manufacturing in Architecture
The challenge was to investigate the potential offered by the symbiosis of topology optimization and additive manufacturing for architectural projects. The Altair solution included the use of the HyperWorks suite, especially OptiStruct for optimization tasks. The benefits were reduced construction time and costs due to decreased material usage while receiving better and more esthetic results.

Harita Seating Standardizes on Altair Suite of HyperWorks for all CAE Applications
HyperWorks used by leading Indian manufacturer of seating systems Harita, for homologation testing, regulations and crash analysis for all commercial vehicle seats, bus passenger seats and tractor & off-road seats

Inspired by Nature: Electric Motorcycle goes 3D - Combining Topology Optimization, New Materials, and Additive Manufacturing in the Development of the Airbus APWorks Light Rider Results in a Revolutionary Lightweight Design
The Airbus APWorks Light Rider is the world's first 3D printed motorcycle prototype. Altair OptiStruct® was used for inspiration of its organic structure. Using additive manufacturing, a simulation-driven design process approach and topology optimization during the process achieved optimum lightweight design.

Sintavia
Sintavia utilized Altair Inspire to prove the ability to additively manufacture optimized aerospace replacement parts that exceed existing part performance while decreasing
the overall weight.

Auburn University applies HyperWorks to Optimize the Design of Composite Suspension Components and Monocoque for a SAE Formula Student Racecar
To optimize the car performance, the Auburn University SAE Racing Team focused on selected components that were most promising in terms of mass reduction with equal or increased stiffness. HyperWorks enabled them to reduce component mass-to-stiffness ratio, thereby improving car performance, speed up development time, as well as grow in knowledge of composite material design and optimization

HyperWorks Enables Ingeniacity to Reduce Mass of Sailing Yacht Composite Bowsprit by 65%
Altair's HyperWorks Suite provided the pre-processing, optimization and FE-solving tools to help create a new bowsprit design that was 34kg lighter than the previous model

Adam Wais of Rolo Bikes Discusses the Working Relationship with Altair
During the development of a new carbon fiber bicycle, the design team at Sweden based Rolo Bikes, wanted to develop a frame which exhibited world leading strength and stiffness attributes while keeping weight to an absolute minimum. The team required an efficient process to design the frame and test it in a virtual world against the industry’s safety and performance standards.

  •  
CEVT Discuss Multi-Disciplinary Optimization for Vehicle Development
China Euro Vehicle Technology (CEVT) discuss the application of Multi-disciplinary Optimization (MDO) during the development of new automotive vehicle architectures.

  •  
Gator Motorsports
Gator Motorsports utilized Inspire to redesign its brake pedal, as well as suspension bell cranks. This resulted in increased stiffness and a reduction of weight.

Politecnico di Milano University
The Politecnico di Milano University implemented generative design software to quickly and easily identify the ideal shapes and materials for three architectural design concepts.

Using Topology Optimization with solidThinking Inspire for Improved Casted Rail Compoments
A simulation driven approach was taken using solidThinking Inspire for topology optimization, Evolve for shape refinements and HyperWorks for FE analysis for the optimization of an existing component design to be manufactured with casting/AM technologies

APWorks Choses OptiStruct for Topology Optimisation for the 3D Printed Light Rider
Despite its skeletal appearance, the Light Rider is an extremely strong yet lightweight electric motorcycle designed by Airbus subsidiary APWorks as a showcase of what’s possible when OptiStruct's topology optimisation is coupled with metallic 3D printing.


Written by Tanya Weaver from DEVELOP3D.

A Vision of Tomorrow's Architechture: Designing the LAVA Bionic Tower
Exploring design variants with OptiStruct's FE-based topology optimization to generate a free-form exoskeleton structure

Technische Universität Dresden
The team at Technische Universität Dresden used Altair Inspire to redesign a Formula Student steering column mount that saved 35% of the weight and is produced with additive manufacturing.

Optimization-driven Product Development at Volvo
Harald Hasselblad (PhD) - Senior Analysis Engineer at Volvo Car Group Sweden - talks about introducing an Optimization Culture Arena to support simulation driven development in his company.

Biberach University of Applied Science, Institute for Architecture and Urban Development
Create modern, functional, stiff, and light architectural designs. Altair OptiStruct used to create feasible designs

ESAComp for Aerospace
One page flyer showcasing how ESAComp can be applied for design optimization in the aerospace industry.

Thales Alenia Space
Companies from across a wide range of industries are attempting to find the potential impact that additive manufacturing (AM) could have on design and manufacturing processes. During its own efforts to explore AM and its potential for space satellite development programs, Thales Alenia Space Spain wanted to conduct a research project to see how optimization techniques could be used in conjunction with new manufacturing technology. The primary objective of the study was to use design optimization techniques to reduce the thermal compliance of a satellite’s aluminium filter bracket, while also optimizing the component for weight and readying the final design for the additive manufacturing process.

Optimized Design for 3D Printed Valve Block Sheds Weight, Size and Gains Improved Performance
Not every component or product is suitable
for 3D printing, depending on its size, form
and design as well as the quantity needed.
A valve block is very suitable for 3D printing
and has a high potential for improvement in
weight, performance, and design freedom
when additively manufactured.

Composite Rotor Blade Analysis using Altair HyperWorks
As part of a senior design project – the design and analysis of a coaxial rotor craft –
Christopher Van Damme, at the time of the project senior undergraduate student within the
department of Engineering Mechanics at the University of Wisconsin-Madison, had to analyze
a composite made helicopter rotor blade. In his analysis he had to employ Computer-Aided
Engineering tools to cover the required studies regarding static, modal, frequency response,
and dynamic analysis of the rotor.

Structural Design of Concrete Shells in Seismic Areas Using HyperWorks
Challenge: Structural optimization to design expressive structures that can safely
be employed in seismic areas

Altair Solution: Investigate shell structures

Student Team H2polit0 of Politecnico of Torino Applied HyperWorks to Reduce Vehicle Weight and Fuel Consumption on Shell Eco Marathon Europe Competition
Student teams from around the world participate in the Shell Eco-marathon (SEM), a unique low energy consumption competition for student teams. Within the competition the teams strive to design, build and drive the most energy-efficient car. In three annual events in Asia, Americas, and Europe, student teams compete on the track to see who goes furthest on the least amount of fuel. The competition evaluates different aspects of the car, the most important of which is of course the energy consumption: the less energy the car needs, the better it will rank.

Student Racing Team from Politecnico di Torino uses HyperWorks to Improve Weight, Manufacturability, and the Performance of Race Car
The students used HyperWorks which resulted in a weight reduction of 30% for those parts that were taken under consideration.

Design and Optimization of a High Performance C-Class Catamaran with HyperWorks
Born in 1961, based on a challenge between
Great Britain and the United States about who
builds the fastest catamarans, the ‘C-Class’
has been the driver of many innovations in
the world of multihull sailing.

Climbing the Winner’s Podium with HyperWorks
HyperWorks allows for the option to increase the stiffness of the wheel shell through the use of OptiStruct. By applying HyperWorks to
their composite design and development process the team was able to increase the stiffness of the chosen components by 10 percent while learning how to do a structural layout of carbon fiber composites.

ThyssenKrupp Elevator
ThyssenKrupp Elevator wanted to explore ways to ensure that an innovative, ropeless elevator system design was as lightweight as possible in order to maximize the loading capacity of the cabins. Altair ProductDesign was selected to explore methods and materials that could help to minimize the weight of the design due to the company’s experience in removing mass from products in the automotive and aerospace sectors.

3D Systems
3D Systems utilized topology optimization, finite element analysis,  and generative design to conceptualize a new material layout for a 3D printed skateboard deck and trucks.

Baker Hughes Drills 60% off Product Development Time With HyperWorks-Driven Simulation
One of the world’s leading suppliers
of oilfield services, products, technology
and systems, Baker Hughes operates globally
with nearly 59,000 employees. The company,
headquartered in Houston, Texas, recently
recorded $21.4 billion in annual revenue
from sales of both services and highly
innovative products for the world’s oil
and natural gas industry.

Application of HyperWorks for Collaborative/Global Computer-Aided Engineering And Design Instruction at Brigham Young University
For a recent ME 471 class, a team of five students re-engineered the chassis/suspension platform for a 1969 Chevrolet Camero. At the conclusion of the project, the team presented a comprehensive review of their re-design vehicle to a panel of PACE program representatives and partners. Key to arriving at an efficient design was the early application of Altair topology optimization to the chassis, suspension, and wheel design of the vehicle. Altair HyperMesh was applied to generate finite element models that formed the basis for the topology optimization studies. The team results showed that 

The chassis mass was reduced by 34% through the application of topology optimization. The suspension control arm mass was reduced by 28%. The team was able to apply the Altair HyperWorks simulation tools in a seamless manner with the Catia-based CAD data that was generated for the vehicle re-design.

Haier Redesigns Air Conditioners and Packaging with Altair HyperWorks to Eliminate Drop Damage
Haier Group is one of the world’s largest manufacturers of home appliances and consumer electronics. The company is the leader of its industry in China, where it is headquartered.



Haier ships its products all across the globe and in more than 100 countries, so well designed product packaging is crucial to the company’s ability to deliver products without damage to even the farthest destinations.



Download the Case study to see how Altair was able to reduce costs of physical testing and eliminate drop damage using simulated drop testing with HyperWorks.

Re-Loc
Re-Loc is a UK based company that developed a new product to help to accelerate the process of positioning metal reinforcement bars inside concrete bricks. The Re-Loc product is a clip that fits tightly inside the brick’s cavity and attaches to the bar, holding it securely in place as the cavity is fillled with concrete. The team had already developed a rough design and proved that it could perform its intended job, but problems arose when it came to the high manufacturing cost of the product. Re-Loc approached Altair ProductDesign to explore ways of reducing material use and cost from the part and to bring the design to a production level.

Establishing Simulation-Driven Design at Scania
Mikael Thellner from Scania Trucks talks about improved design processes thanks to solidThinking Inspire. Designers can evaluate their products in earlier stages due to the ability to do analyses themselves.

Optimization Technology: Leveraging a Solid Foundation to Innovate Better Products
Steady improvements in the OptiStruct solver platform over 20 years have enabled users to tackle increasingly complex design challenges. Now, OptiStruct in combination with 3D printing helps to achieve more efficient structural designs.


By Uwe Schramm
Concept To Reality Winter/ Spring 2015
Subscribe to C2R Magazine




Simulation Powers Development of Professional Power Tools
CAE is a core element in developing high-end, long-lasting professional power tools at DeWalt, a Stanley Black & Decker brand.

OptiStruct Plays a Key Role in the Air Wing Design for a Multi-Disciplinary, Collaborative University Capstone Design Project
The Georgia Tech Institute of Technology (Georgia Tech) took the lead in collaborating with five Universities to develop a senior-level capstone design course that would give engineering students collaborative design experience using state-of the art computational tools. The multi-disciplinary course was completed over two semesters. Students, under the direction of University professors and industrial mentors, completed a fixed-wing aircraft design.


Euro-Pro Embraces Simulation-Driven Design with Altair HyperWorks
Euro-Pro, maker of Ninja blenders and Shark vacuums, has embraced simulation-driven design to reduce physical tests and improve product performance and durability. HyperWorks solvers (OptiStruct, RADIOSS and AcuSolve) are used across the board via Altair’s HPC cloud infrastructure


Scania
Scania uses a simulation-driven design process including topology optimization and finite element analysis. This speeds up their design and development process and produces lighter, more efficient components.

Monash Motorsport takes advantage of optimization and additive manufacturing technologies and wins again!
Since their first Australian SAE Student Racing competition in 2000, the Monash Motorsport team has steadily improved the performance of their race car. Recently the students discovered the benefits of combining Altair‘s OptiStruct optimization technology and 3D printing. Based on an initial prototype rear hub design from the 2013 car, the team proceeded to pursue titanium front hubs and uprights to decrease the car’s unsprung mass. This was a tough challenge, since the former design was already made of lightweight aluminum. To tackle this, Monash Motorsport employed Altair’s optimization technology OptiStruct to design and optimize a titanium upright, which was then produced using additive manufacturing technology from CSIRO. As a result, the students were able to reduce the component’s weight by a further 30 percent whilst maintaining the component stiffness and reducing the development time and costs.

In Search of the Perfect Snowmobile Design
Polaris uses optimization software to achieve lightweight designed and recede time to market. Learn how in this reprint of an article published on the January 2015 issue of Desktop Engineering magazine.


AAM
American Axle & Manufacturing employed topology optimization and FEA to redesign an automotive carrier to achieve a weight reduction of 20%.

Applying Optimization Technology to Drive Design of a 100-Meter Composite Wind Turbine Blade
This presentation demonstrates how numerical optimization can be applied using OptiStruct to aid in the design development of a 100-meter composite wind turbine blade.

Combining topology optimization with laser additive manufacturing reveals new potential for lightweight structures
Challenge: Development of design and optimization methods to improve components made with laser additive manufacturing methods.

Altair Solution: HyperWorks, OptiStruct, Simulation Driven Design Process

Benefits: increased material efficiency, lighter and stiffer structures, less user training required, flexible and adaptable manufacturing process


CAE Simulation driven Product Development of Expandable Liner Hanger
CAE Simulation driven Product Development of
Expandable Liner Hanger presentation given by Ganesh Nanaware of Baker Hughes at ATCx Energy 2014.


Automation of Engineering Analysis and Design Process in Subsea Industry
Automation of Engineering Analysis and Design Process in Subsea Industry

Fully automated in a single process: Optimization and manufacturing of CFRP components
Use of HyperWorks and adapted threestep optimization process for Composite materials integrated in the production process

Benefits:
  • process suitable for large volume series
  • flexibility in production
  • short learning curve for users
  • light and yet stiff components


Optimal Design Exploration Using Global Response Surface Method: Rail Crush
As design exploration and optimization methods have become commonly accepted across a range of industries, such as aerospace, automotive or oil and gas, they are frequently utilized as standard practice to efficiently produce designs and aid critical engineering decisions. The widespread acceptance of these methods coupled with the power of modern computing has led to applications across a range of design problems and ever-increasing complexity. The size and scope of this expansion continually pushes the boundaries of existing exploration and optimization methods. Furthermore, a complete exploration of the optimal design space includes computationally intensive features such as multi-objective optimization, to understand the trade-off between competing objectives, and global optimization, to avoid local extrema.


Rolo Bikes
Rolo Bikes approached Altair ProductDesign due to its familiarity with the HyperWorks suite and expertise in the application of CAE techniques to optimize carbon fiber structures. The objective of the program was to optimize a new bike frame to achieve world leading performance for weight, stiffness and comfort. In addition, the team was also tasked with developing an efficient and cost effective virtual testing process to analyze the performance of future bike frames from Rolo and other partner companies.

Studio-X
Studio-X and Tokyo DIGITAL use topology optimization to improve structural optimization and enhances building performance while reducing assembly time and material waste with lightweight design. 

HyperWorks helps ACENTISS in the development of Elias, a new electrically powered ultra-lightweight airplane
Recently, ACENTISS has developed the all-electric technology demonstrator ELIAS (Electric Aircraft IABG ACENTISS) based on the one-seater UL aircraft ELECTRA ONE from PC-AERO GmbH.
To perform all the needed engineering and development work of the project ACENTISS applied Altair’s HyperWorks suite.


CAE Technology Applicable to the Aerospace Industry - JEC Reprint
In this article, published on the May 2014 issue of JEC Composites Magazine, Shan Nageswaran explains why the latest version of HyperWorks® represents the most advanced evolution of computer-aided engineering (CAE) technology applicable to the aerospace industry.

Luxon Engineering Applies Optimization-driven Design to Motocross Components
The motorcycles used in motocross racing demand light weight and high strength components in order to gain a performance advantage over the competition. In this video testimonial Billy Wight, President of Luxon Engineering, presents a case study of applying Altair HyperWorks optimization techniques in the design of a motocross triple clamp assembly and rear suspension linkage.

Empire/Renishaw
Renishaw and Empire Cycles utilized generative design to conceptualize the world's first metal additive manufactured  bicycle frame. This resulted in a 33% weight reduction of the bicycle.

HardMarque
HardMarque coupled topology optimization with additive manufacturing to conceptualize and refine the design of a piston. The final piston design is 23.5% lighter than the original design. 

Intel Solution Brief: Maximize Performance and Scalability of Radioss on Intel® Xeon® Processor E7 v2 Family-Based Platforms
This paper summarizes the findings of a benchmark study with Radioss and Intel® Xeon® processors. In the study, Altair benchmarked Radioss using a modified crash simulation model on a single-node platform -- Radioss was able to easily take advantage of all 60 cores, running the workload 2.75X faster than on a comparable 24-core platform.

Race Face
Race Face redesigned a bicycle crank using generative design and finite element analysis. The concept design process yielded a part with increased stiffness and strength without increasing the weight of the part.

Reducing Weld Distortion by 93% with HyperStudy
Gestamp Tallent Ltd is a world class designer, developer and manufacturer of cutting edge, chassis structural and suspension products, body in white structures, modules and systems for the automotive industry. Gestamp used the BMW MINI front subframe tower to demonstrate the weld distortion optimisation approach. The tower is particularly susceptible to distortion due to its tall and thin dimensions. The objective of this optimisation was to minimise the distortion of the tower measured by the displacement of the top of the tower as the weld sections cool. In order to further investigate weld removal optimisation they chose HyperStudy.

Peter Macapia, LabDORA
Architect Peter Macapia aims to change perceptions of how buildings can look; generative design software aids in imaginative engineering and architecture projects, integrating design and testing in the same space.

Aircraft Carrier Alliance
Creating a Structurally Efficient Design for the Queen Elizabeth Class Aircraft Carrier

When making key decisions at the concept and preliminary design phases of a naval ship project, the designer is often obliged to work with limited data on the major structural design drivers for the vessel. This can lead to a largely subjective design approach which can result in inefficiency and even structural problems being locked-in from the start. To solve any issues, increased material use, weight and unnecessary complexity, as well as high design and manufacture costs can be introduced to the end product. To evaluate the potential of simulation-driven design under the unique requirements of naval ship design, the ACA partnered with Altair ProductDesign.

BASF Enlightens the Auto Industry
Continuous fiber-reinforced thermoplastic composite and virtual simulation technology enables BASF to develop an innovative and cost-neutral seat pan that is 45% lighter than its predecessor.



By Beverly A. Beckert

Concept To Reality Winter 2013 Subscribe to C2R Magazine

Using Analysis to Innovate with New Materials
Analysis and optimization tools enable Samsung engineers to reduce
the cost of appliances without sacrificing performance.



By Beverly A. Beckert

Concept to Reality Winter 2013 Subscribe to C2R Magazine

Simulation Tools: Driving the Future of Design
The Clemson University Deep Orange 3 program introduced future engineers to analysis software, enabling them to develop a novel sports car concept architecture.



By Dr. Paul Venhovens

Concept To Reality Winter 2013 Subscribe to C2R Magazine

When Engineering Intuition is Not Enough
A new technology helps design engineers quickly create dramatically lighter structures — and better understand the effects of material placement in whatever they’re developing.



DeWalt Optimizes Power Tools with HyperWorks
The development of modern electric power tools requires special attention to be simultaneously paid to both the efficiency and user comfort of the tool, as well as the robustness and durability of the devices. For the fulfillment of these two groups of attributes, computer-aided simulations using HyperWorks has become central to the development process of Stanley Black & Decker Deutschland GmbH.

Case Study Sogeclair
Case Study about Sogeclair's use of HyperWorks

Industry: Aerospace interiors

Challenge: Development of new flooring concept to fix the cabin seats while realizing a lighter structure, adjustable panels for all types of aircraft, and an easier installation and
maintenance.

Altair Solution: Use of HyperWorks, especially HyperMesh and HyperView as a pre- and postprocessor, OptiStruct for optimization issues, RADIOSS for linear and nonlinear simulation, and solidThinking Evolve/Inspire for concept modeling

Benefits:
  • Saving development time and costs

  • Use a new approach in the design leveraging optimization

  • Reduce product weight through structural optimization of composite components



Evenflo Juvenile Products
Evenflo employs topology optimization and generative design simulation for “sustaining engineering” where fast turnaround is essential for functional improvements of  infant car seats design.

Creactive Design
Using Optimization to Improve the Design of a Classroom



Product design consultancy and structural engineering partner, Creactive Design, wanted to explore the possibility of utilizing optimization technologies to improve the design of a cross-functional roof for an innovative new classroom environment. The classrooms, under development at architecture firm, Future Systems, would be prefabricated in glass reinforced plastic (GRP) to a high standard, making them energy efficient, durable and eminently replicable. The ambitious project was called the “World Classroom”. Creactive approached Altair ProductDesign, to assist in this explorative project due to Altair’s reputation for developing the market leading optimization software solution, OptiStruct.

Dante Sanchez Discusses the Optimization of Mabe's White Goods Packaging
For white goods manufacturer Mabe, the quality of the design and engineering of their home appliances is paramount. The objectives of this project were to simulate the effect of the distribution environment events to a washer and dryer product and perform optimization to improve product protection while reducing material costs and weight.

BiggerBoat Solutions Makes Waves in Auto Industry Using HyperForm to Cut Die Development Costs and Time
When the auto industry crashed in 2008
and the tool shop where Jay Weiner worked
closed its operations, he started his own
company, called BiggerBoat Solutions Ltd.
He carries out metal-forming simulations
for major tooling suppliers and originalequipment
manufacturers. With 15 years
of experience in tooling design, Weiner and
his Toronto-based practice offered a service
that no one else had perfected but that
was crucial to a key process in automotive
manufacturing: the simulation-based die
design for stamped sheet-metal parts.

Danish Team Uses HyperWorks to Prove the Value of Topology Optimization for Concrete Architectural Structures
Denmark’s Aarhus School of Architecture
was interested in exploring the potential
of applying the kind of simulation-based
topology optimization used in the automotive,
aeronautical and naval industries to
architectural concrete structures and coupling
it with robotic fabrication of polystyrene
formwork for concrete casting. Led by
Per Dombernowsky, who served as project
manager and engineer, and Asbjørn
Søndergaard, who headed the project’s
design and optimization aspects, the
combined academic and industrial team
created the Unikabeton Prototype project.

Page: 1  2  

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe