| Login

Resource Library

Keyword
GO
Categories










Industries














103 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Catapult Tutorial 1: Ground, Rigid Groups, Joints and Contacts and Results
Using Inspire Motion, learn how to set up a motion simulation of a medieval catapult. This video covers the setup of ground, rigid groups, joints and contacts, and results

Catapult Tutorial 2: Actuators, Motors and Springs
Using Inspire Motion, learn how to set up a motion simulation of a catapult. This video covers the setup of actuators, motors and springs

SimLab Tutorials - Solver Setup for Thermal Steady State Analysis
Create material and apply properties; create user-defined contacts; apply thermal loads and define loadcases; define lines static loadcases with the temperature leadcase included; create proper solver settings for each loadcase; export and solve for multi-physics analysis

SimLab Tutorials - Setting up a CFD Steady State Analysis - Manifold
Define boundary and initial conditions; create material and apply properties; edit the solver settings to run the analysis

SimLab Tutorials - Conjugate Heat Transfer
Create a tetra mesh with CFD boundary layer; work with turbulence and temperature equations; define CFD boundary conditions based on inflow average velocities and convective heat flux; define symmetry plane; create material and define properties; run and post-process a CFD steady state analysis

SimLab Tutorials - Steady Flow in a Centrifugal Blower
Create a tetra mesh with CFD boundary layer; work with moving reference frame; define CFD boundary conditions based on turbulence viscosity ratio; edit the solver settings; run and post-process the analysis

SimLab Tutorials - Natural Convection Around a Hot Cylinder
Create a tetra mesh with CFD boundary layer; apply gravity and define Heat source; apply initial and temperature boundary condition; create symmetry planes; visualize results as contour or as vector

SimLab Tutorials - Turbulent Flow in a Mixing Elbow
Import custom ribbon; create a tetra mesh with CFD boundary layer; apply CFD boundary conditions; run a steady state turbulent flow analysis; visualize results as contour or as vector

SimLab Tutorials - SPH Analysis with nFX - Drivetrain
Define nFX material and properties; apply simulation conditions; create nFX particles; export solver deck

SimLab Tutorials - Modal Frequency Response Analysis of a Crank Shaft
Create a modal frenquency response analysis in the solution browser; define an excitation load based on applied loads; create a table with modal damping values; define the solution settings and output requests; compute solution and review results; plot and X Y graph for the displacements versus frequency

SimLab Tutorials - Modal Frequency Response Analysis of a Sphere
Create isotropic and fluid material and define the properties accordingly; define acoustic behavior to a shell entity; apply enforced displacement to be used for an excitation load; create solver settings and output requests; compute the solution and review the results; plot an XY graph for the pressure versus frequency

SimLab Tutorials - Pre-Tensioned Bolt Analysis of Connecting Rod
Import material database, create washer surface and define property; create solid bolts with pretension; define loads, constraints and contacts; define loadcase and solver settings; compute and review the results

SimLab Tutorials - Linear Static Analysis of ConRod
Create linear static solution; define constraints and loads; define contacts; create material and apply properties; run the analysis and review the results

SimLab Tutorials - Normal Mode Analysis - Brake Assembly
Create coincident mesh with join tool; create normal analysis solution; define constraints and spring elements; apply stick contact type; solve and review the displacement and stress

SimLab Tutorials - Solutions Based Modal Frequency Response Analysis - Bracket
Create RBE and apply constraints; apply an excitation load; create material and apply properties; define a load case and modify the solution parameters; run the analysis and plot the frequency dependent results

SimLab Tutorials - Non Linear Static Analysis - Flex Plate
Apply symmetry constraints; apply enforced displacement constraint; create 3d bolt with pretension; create advanced contacts; create loadcase; modify solution parameters; solve and review the results

SimLab Tutorials - TFSI - AutoSolve
Import model containing a CFD solution; check the loads and boundary conditions created on a second solution; create a loadcase that included the output temperature and pressure from the CFD solution; review the mapped loads and results

SimLab Tutorials - Coupled Linear Structural Thermal Analysis
Create a heat transfer solution and add thermal constraints and heat flux; create a linear static solution and include the thermal analysis subcase as loadcase parameters; visualize the loadcases results separately

SimLab Tutorials - Linear Steady State Heat Convection Analysis
Create a steady state heat transfer solution; apply thermal loads such as constant temperature and uniform convection; solve and visualize grid temperature

SimLab Tutorials - Linear Transient Heat Transfer Analysis
Split faces using chaining edges; create a transient heat transfer solution; create material with thermal properties; define initial conditions; apply thermal loads such as time dependent heat flux and convection; define solver settings and analyze

SimLab Tutorials - Steady State Heat Transfer Analysis
Create different materials with thermal properties for the cylinder, fin and insulators; create steady state heat transfer; apply tie contacts between the bodies; define thermal loads such as flux and convection

SimLab Tutorials - Suspension Insulator
Create electrostatics solution using flux solver; create dielectric material by atributing a relative permitivity; define region physics such as air, dielectric and perfect conductor; create tangential field symmetry plane; compute and review the results

SimLab Tutorials - Transient Heat Transfer Cooling Time Study - Casted Housing
Create material with thermal properties; create transient heat transfer; define initial conditions; define time dependent convection; define the solver settings and analyze

SimLab Tutorials - Solutions Based Conjugate Heat Transfer
Create a tetra mesh with CFD boundary layer; work with turbulence and temperature equations; define CFD boundary conditions based on inflow average velocity and convective heat flux; define symmetry plane; create material and define properties; run and post-process a CFD steady state analysis

SimLab Tutorials - Solutions Based Steady Flow in a Centrifugal Blower
Create a tetra mesh with CFD boundary layer; work with moving reference frame; define CFD boundary conditions based on turbulence viscosity ratio; edit the solver settings; run and post-process the analysis

SimLab Tutorials - Transient Flow in a Mixing Elbow
Create a navier-stokes flow transient solution; apply average velocity inlets and define outlet; create convective wall and define symmetry plane; define initial conditions; create material and define solid and fluid properties; defineproper solution parameters; update results and review the output

SimLab Tutorials - Thermal FSI of Exhaust Manifold
Extract fluid surface from the solid; create CFD tetra mesh and boundary layer; apply boundary conditions with constraint option activated; run and post-process steady state analysis

SimLab Tutorials - Solutions Based Turbulent Flow in a Mixing Elbow
Import custom ribbon; create a tetra mesh with CFD boundary layer; apply CFD boundary conditions; run a steady state turbulent flow analysis; visualize results as contour or asa vector

SimLab Tutorials - Solutions Based Natural Convection Around a Hot Cylinder
Create a tetra mesh with CFD boundary layer; apply gravity and define heat source; apply initial and temperature boundary conditions; create symmetry planes; visualize results as contour or as vectors

SimLab Tutorials - Setting-up a Model for Molding Process
Import, position and inspect a CAD model; create mesh controls, surface mesh and organize the parts; create solution and define polymer properties to the bodies; define initial and boundary conditions; apply solver settings, export the deck and solve

SimLab Tutorials - Parametric DOE Optimization using CAD Software Creo
Create a CAD parametrized model in PTC creo; create a project in simlab; run a project using interactive mode; set up a DOE study and run the experiments

SimLab Tutorials - Topology Optimization with Manufacturing Constraints
Create RBE connectors; create LBC and load cases; define the design space for a topology optimization; define responses; create manufacturing constraints; set an optimization objective; run an optimization with OptiStruct

SimLab Tutorials - Topology Optimization with Pattern Constraints_Y Bracket
Create RBE connectors; work with specifications for loads and loadcases; set up a topology optimization including pattern constraints; run an optimization with OptiStruct; view and post-process optimization results

SimLab Tutorials - Parametric Optimization using HyperStudy - Part I
Start recording a nominal problem; create parameters; import a parametrized CAD file; create a 2D/3D mesh using the parameters; solve and define the study responses

SimLab Tutorials - Parametric Optimization using HyperStudy - Part II
Create a new study inside HyperStudy; register solver script; setup nominal problem; conduct a DOE study; build a fit model; optimize on the fit

SimLab Tutorials - Topology Optimization with Solutions - Bracket
Create a linear static solution, define loads and boundary conditions then compute; define a topology optimization, design space, constraints, response and objective; export the optimized shape as .stl; import the .stl file and perform a mesh cleanup; transfer properties and LBCs to the optimized geometry and apply TIE contact; re-analyze the model then review the results

SimLab Tutorials - Bore Distortion
Import a results file with split faces; create a coordinate system; compute the bore distortion; view and export bore distortion results

SimLab Tutorials - Post-Processing Optimization Results
View and post-process results of topology optimization

SimLab Tutorials - Groups and Colors in Automation
Use color information to create groups; create groups automatically from features; obtain edge groups from faces and bodies; use boolean operations between groups; run a project in different models

SimLab Tutorials - Scripting with Process Recording_ConRod
Record a process into JavaScript or Pythonscript; re-run the recorded script on a different model

SimLab Tutorials - Process Recording using Parameters_ConRod
Record a process into JavaScript or Pythonscript using a set of process parameters; re-run the recorded script using different parameter values

SimLab Tutorials - Process Recording using Templates_ConRod
Use mesh-, LBC- and loadcase templates during a process recording; record a process including solver setup and solver execution

SimLab Tutorials - Setting the Environment
Edit the preferences of the software; Choose your favorite mouse settings; Display, move and resize windows and browsers on the screen; Create additional toolbars.

SimLab Tutorials - Visualize and Organize
Open and import files; Use the model browser to organize your assembly; Visualize and isolate selected components; Select, isolate and hide entities such as faces or elements; Use some advanced selection modes; Create and retrieve entity groups.

SimLab Tutorials - QuickMesh - Gear
Import a CAD geometry; Quickly tetmesh a solid body using different global settings; Export your mesh.

SimLab Tutorials - Mesh Controls - Gear
Identify, select and isolate geometry features; Tetmesh a solid body using Mesh controls; Export a mesh template based on the face color.

SimLab Tutorials - Volume Meshing with Layers-Housing
Request locally a given amount of tet layers through thin walls; Create a volume mesh with Tet10 from an existing, encolsed Tri6 mesh; Auto cleanup a volume mesh based on different quality criteria.

SimLab Tutorials - Meshing with Body Break-Engine Assembly
Update CAD features; Import a mesh template; Cut and separate a section of a body using Region mesh control; Remove details using Logo mesh control; Mesh a valve seat; Create a circular gasket imprint

SimLab Tutorials - Meshing with Process Automation-Piston
Perform a mesh automatically running a Javascript or Pythonscript from the process automation menu

SimLab Tutorials - Quick Imprinted Mesh for Parasolid Assemblies
Generate an assembled surface/shell mesh from a parasolid file; Generate an assembled volume/solid mesh; Transfer groups to the meshed assembly

SimLab Tutorials - Hex Meshing using Extrude function-Y Bracket
Hex mesh 2.5D geometries using extrude; Hex mesh axial symmetric bodies; Edit the number of hex layers through a body.

SimLab Tutorials - Region Definition by Two Planar Faces
Create region mesh control based on 2 planar faces; Edit the dimensions of the cuboid region by changing the values, scaling and moving the region; Create region mesh control based on 2 intersecting planes

SimLab Tutorials - Weld Modeling
Prepare the mesh for a triangular weld; Create a triangular weld; Prepare the mesh for a bead weld; Create the bead weld

SimLab Tutorials - Welding Process with Connection
Create a bead weld using the open loop edges; Connect weld bead bodies defining a spline curve trajectory; Perform a boolean operation between weld bodies and the weld bead

SimLab Tutorials - Exploring Weld Basic Feature
Weld two bodies containing a gap; Configure weld parameters within the weld basic feature

SimLab Tutorials - Tetra Mesh with Boundary Layers - Manifold
Create fluid domain; Create a volume mesh with boundary layers

SimLab Tutorials - CFD Meshing of an Exhaust Manifold
Create a surface mesh, modify layers and apply volume layers mesh control; Generate fluid body; Generate boundary layer and volume mesh

SimLab Tutorials - CFD Meshing Of a Differential Gearbox
Join cylindrical and planar faces; create inlet and outlet faces by filling holes; Select surfaces connected to a face; Generate fluid body; Create boundary layer and volume elements

SimLab Tutorials - Defeaturing and Cleanup-Gear
Simplify your model by removing features; Locally remesh faces; quality cleanup your mesh

SimLab Tutorials - Mesh Editing-Housing
Local remesh faces, if needed with grid mesh; Manual cleanup elements by swapping and collapsing edges; Defeature the model by flattening and aligning faces

SimLab Tutorials - Editing holes and circular faces_Housing
Remove and modify holes; Change the number of elements around/along circular faces; Align faces and edges to a given radius; Remesh partial cylinders

SimLab Tutorials - Advanced Grid Meshing
Use different methods to create grid meshing; Interactive meshing, Mesh transition, Project to CAD, Three sided faces, Intersection picking

SimLab Tutorials - Edit Mesh of Section Cut-Engine Assembly
Replace faces within a model; Translate faces and features using transform; Create identical/mirrored faces with replace faces

SimLab Tutorials - Gasket Meshing
Imprint gasket edges on faces; Create gasket faces using edge offset; Create gasket bodies using extrude; Imprint gasket faces using Imprint gasket

SimLab Tutorials - Logo removal
Remove a logo from meshed bodies

SimLab Tutorials - Assembly with shared nodes using Join tool
Align cylindrical surfaces; Create shared cylindrical/planar faces; Check for shared entities; Separate shared entities to obtain coincident nodes; Cleanup joined parts through re-meshing

SimLab Tutorials - Assembly with Node Equivalence
Create shared cylindrical/planar faces; check for shared entities; cleanup joined parts through re-meshing; display equivalence nodes

SimLab Tutorials - Thread Removal
Select cylinders based on a defined radius; create groups using select adjacent layers; create mesh control; use remove thread tool; remesh cylindrical faces using isoline mesh control; remesh cylindrical faces by modifying layers; change cylinder radius

SimLab Tutorials - Model Compare using Fringe Plot
Search differences between models by using fringe plot

SimLab Tutorials - Auto 1D Bolts
Create/edit 1D bolt definition file; create automatically 1D bolts with/without pretension

SimLab Tutorials - Auto Hex Bolts
Create 3D bolts using faces/groups; merge and move bolts in a model; create solid pretension loads using Select

SimLab Tutorials - CAD based Hex Bolts
Create 3D bolts from CAD bolts; Create pretension load using Create; copy/reposition the bolts

SimLab Tutorials - Create 1D Bolts
Create 1D bolt head; create 1D bolt thread; Join the bolts using connect

SimLab Tutorials - Quick Modal Analysis
Create RBEs; constraint a model; set up and execute a quick normal mode analysis; view the results

SimLab Tutorials - Analysis 1D Pretension and Bearing Pressure
Define material and properties; define quickly 1D bolts with pretension; defining loads and constraints; define contacts; export solver deck; run a linear static analysis with OptiStruct; visualize entities

SimLab Tutorials - Linear Static Analysis of Connecting Rod
Create a local coordinate system; define contraints and loads; define contacts; create material and apply properties; export to solver and import results

SimLab Tutorials - Normal Mode Analysis of an Assembly
Create matching faces through assembly; assign load, mass and spring connection; assign material and properties; execute the analysis and verify results

SimLab Tutorials - Thermal Stress Analysis_Safety Valve Assembly
Apply constraints on 1D bolts RBE nodes; apply pressure loads; create mapping of thermal loads; import contact definition; create material and apply properties; create load case; solve and review the results

SimLab Tutorials - Non-Linear Static Analysis
Apply symmetry constraints; apply enforced displacement constraint; create 3d bolt with pretension; create advanced contacts; create load case; modify solution parameters; solve and review the results

SimLab Tutorials - Solver Setup for Non-Linear Analysis
Create group-based 3d bolts with pretension; apply user-defined contacts; create material with elasto-plastic curve; apply constraints and bearing pressure; create loadcases and define non-linear static solver settings

SimLab Tutorials - Modal Frequency Response Analysis - Bracket
Create RBE and apply constraints; apply an excitation load; create material and apply properties; define a load case and modify the solution parameters; run the analysis and plot the frequency dependent results

Altair SimSolid Tutorial Projects
Altair SimSolid tutorial projects contain CAD models, SimSolid project files and complete workflow instructions. They are intended to complement the SimSolid Fast Start Training Guide with additional instructions on several typical use cases. They are a great resource which allow you to compare SimSolid against your existing FEA solutions.

Inspire 2019 Introduction
In this course, you will have the opportunity to learn about the Inspire 2019 interface along with tools and workflows contained within Inspire. Modules contained within the course provide detailed descriptions of the tools and workflows within Inspire. You will also have the opportunity to watch and perform hands-on exercises within each module.


eBook: Learn External Aerodynamics with Virtual Wind Tunnel
Altair Virtual Wind Tunnel software is an environment for doing External Aerodynamic CFD analysis. This book takes you step by step through the basics of CFD to bring clarity to the user regarding the fundamentals of the subject.

Inspire Cast 2019 Introduction
In this course, you will have the opportunity to learn about the Inspire Cast 2019 interface along with tools and workflows contained within Inspire Cast. Modules contained within the course provide detailed descriptions of the tools and workflows within Inspire Cast. You will also have the opportunity to watch and perform hands-on exercises within each module.


Inspire Form 2019 Introduction
In this course, you will have the opportunity to learn about the Inspire Form 2019 interface along with tools and workflows contained within Inspire Form. Modules contained within the course provide detailed descriptions of the tools and workflows within Inspire Form. You will also have the opportunity to watch and perform hands-on exercises within each module.


Altair SimSolid Connections Training Guide
Altair SimSolid is a next generation, high capacity, structural FEA product. It uses new computational methods which operate on original, unsimplified CAD geometry and does not need a mesh. This training guide provides details on how to connect and manage large assemblies in SimSolid. For general overview, please see SimSolid Fast Start Training Guide.

Altair SimSolid Dynamics Training Guide
Altair SimSolid is a next generation, high capacity, structural FEA product. It uses new computational methods which operate on original, unsimplified CAD geometry and does not need a mesh. This training guide provides details on how to perform dynamic analysis in SimSolid including modal frequency response, transient response and random response analysis. For general overview, please see SimSolid Fast Start Training Guide.

Altair SimSolid Thermal Analysis Concepts Guide
Altair SimSolid is a next generation, high capacity, structural FEA product. It uses new computational methods which operate on original, unsimplified CAD geometry and does not need a mesh. This training guide provides details on how to perform steady state thermal analysis including convection and conduction. It also talks about thermal stress analysis in SimSolid. For general overview, please see SimSolid Fast Start Training Guide.

Altair SimSolid Fast Start Training Guide
Altair SimSolid is a next generation, high capacity, structural FEA product. It uses new computational methods which operate on original, unsimplified CAD geometry and does not need a mesh. This training guide provides more details on the workflows and the technology behind SimSolid. This document is a great resource to get you going.

SimLab sT 2019 Introduction
The purpose of this self-paced course is to provide an introduction to SimLab. The course contains information on the tools available in SimLab and provides exercises to provide you with practice in using SimLab. Models can be downloaded from within the module to practice the exercises on your own.

Inspire 2018 Introduction
In this course you will have the opportunity to learn about the Inspire 2018 interface along with tools and workflows contained within Inspire. Modules contained within the course provide detailed descriptions of the tools and workflows within Inspire. You will also have the opportunity to watch and perform hands on exercises within each module.

Note: This course requires a login to Connect to view.

HyperWorks for Aerospace Applications v2017
The HyperWorks for Aerospace self-paced course covers the critical processes used in the creation of FEA models in the Aerospace industry. This course contains 12 modules covering aspects from model setup to post processing. Each module contains background information on the tools used and practical exercises with recorded demonstrations to help you get familiar with the tools and processes.

Note: This course requires a login to Connect to view.

HyperMesh Quickstart v2017
The purpose of this self paced course is to introduce HyperMesh to new users of the software. Most sections will use the See It, Try It, Do It methodology to cover the concepts. See It allows you to watch a video demonstration of the exercise covered in the section. Try It allows you to go through an interactive video which will guide you through performing the exercise. Do It consists of a written exercise and model that can be opened in HyperMesh which allows you to perform the exercise on your own. Some sections will also contain interactive guides to provide a detailed description of the different options contained within a panel or browser.

Note: This course requires a Connect login to view.

Introduction to OptiStruct for Structural Optimization
The purpose of this self paced course is to cover the basics of OptiStruct Optimization. The course contains modules introducing the basic optimization types and giving an over of each. Many exercises are available in the modules that use the See It, Try It methodology. See It allows you to watch a video demonstration of the exercise covered in the section, while Try It gives you a pdf and model to try it in the software on your own.

Note: This course requires a login to Connect to view.

Introduction to OptiStruct for Linear Analysis
The purpose of this self paced course is to cover the basic topics for OptiStruct Linear Analysis. The Setup sections will use the See It, Try It, Do It methodology to cover the concepts. See It allows you to watch a video demonstration of the exercise covered in the section.

Note: This course requires a login to Connect to view.

Evolve Introduction v2016
This course contains a set of modules to help familiarize you with basics of using Evolve. We will cover an overview of the Evolve interface and working environment, creation of curves, creation of surfaces, transforming and editing surfaces, creating and editing PolyNURBS, and an overview of rendering models.

Note: This course requires a Connect login to view.

Inspire 2017 Introduction
In this course you will get an overview of the tools available within Inspire 2017, including the new Motion Analysis tools. We will cover all aspects from Optimization to Finite Element Analysis right through geometry tools to help redesign and simplify parts.

Note: This course requires a Connect login to view.

SimLab Basic Training V14
The purpose of this self paced course is to provide an introduction to SimLab. The course contains information on the tools available in SimLab and provides exercises to provide you with practice in using SimLab. Models can be downloaded from within the module to practice the exercises on your own. The menu in the course (on the left) can be used to jump to a specific module.

Note: This course requires a Connect login to view.

Page: 1  2  

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe